Details

Title

Exergetic sustainability indicators of a polymer electrolyte membrane fuel cell at variable operating conditions

Journal title

Archives of Thermodynamics

Yearbook

2021

Volume

vol. 42

Issue

No 1

Affiliation

Xu, Bing : Nanjing Forestry University Coll Automobile & Traff Engn, Nanjing 210037, Jiangsu, China ; Chen, Yan : The 723th Institute, China Shipbuilding Industry Corporation, Yangzhou, 225001, China ; Ma, Zheshu : Nanjing Forestry University Coll Automobile & Traff Engn, Nanjing 210037, Jiangsu, China

Authors

Keywords

PEM fuel cell ; Exergy balance ; Exergy analysis ; Exergetic sustainability indicators

Divisions of PAS

Nauki Techniczne

Coverage

183-204

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] Cengel Y., Bole M.: Thermodynamics: An Engineering Approach. McGraw-Hill, New York 1994.
[2] Dincer I.: Technical, environmental and exergetic aspects of hydrogen energy systems. Int. J. Hydrogen Energ. 27(2002), 3, 265–285.
[3] Kazim A.: Exergy analysis of a PEM fuel cell at variable operating conditions. Energ. Convers. Manage. 45(2004), 11/12, 1949–1961.
[4] Mert S.O., Dincer I., Ozcelik Z.: Exergoeconomic analysis of a vehicular PEM fuel cell system. J. Power Sources 165(2007), 1, 244–252.
[5] Barelli L., Bidini G., Gallorini F. et al.: An energetic–exergetic analysis of a residential CHP system based on PEM fuel cell. Appl. Energ. 88(2011), 12, 4334– 4342.
[6] Midilli A., Dincer I.: Development of some exergetic parameters for PEM fuel cells for measuring environmental impact and sustainability. Int. J. Hydrogen Energ. 34(2009), 9, 3858–3872.
[7] Ay M., Midilli A., Dincer I.: Exergetic performance analysis of a PEM fuel cell. Int. J. Energ. Res. 30(2006), 5, 307–321.
[8] Hanapi S., Tijani A.S., Rahim A.H.A., Mohamed W.A.N.W.: Comparison of a prototype PEM fuel cell powertrain power demand and hydrogen consumption based on inertia dynamometer and on-road tests. In: Proc. Int. Conf. on Alternative Energy in Developing Countries and Emerging Economies, Selangor 2015.
[9] Rosen M.A., Dincer I., Kanoglu M.: Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energ. Policy 36(2008), 1, 128– 137.
[10] Midilli A., Inac S., Ozsaban M.: Exergetic sustainability indicators for a high pressure hydrogen production and storage system. Int. J. Hydrogen Energ. 42(2017), 33, 21379–21391.
[11] Tayfun Özgür, Yakaryilmaz A.C.: Thermodynamic analysis of a proton exchange membrane fuel cell. Int. J. Hydrogen Energ. 43(2018), 38, 18007–18013.
[12] Balli O., Sohret Y., Karakoc H.T.: The effects of hydrogen fuel usage on the exergetic performance of a turbojet engine. Int. J. Hydrogen Energ. 43(2018), 23, 10848–10858.
[13] Ghritlahre H. K., Sahu P.K.: A comprehensive review on energy and exergy analysis of solar air heaters. Arch. Thermodyn. 41(2020), 3, 183–222.
[14] Carmo M., Fritz D.L., J. Mergel et al.: A comprehensive review on PEM electrolysis. Int. J. Hydrogen Energ. 38(2013), 12, 4901–4934.
[15] Li C., Liu Y., Xu B., Ma Z.: Finite time thermodynamic optimization of an irreversible proton exchange membrane fuel cell for vehicle use. Processes 7(2019), 7, 419
[16] Obara S., Tanno I., Kito S. et al.: Exergy analysis of the woody biomass Stirling engine and PEM-FC combined system with exhaust heat reforming. Int. J. Hydrogen Energ. 33(2008), 9, 2289–2299.
[17] Ayoub Kazim.: Exergy analysis of a PEM fuel cell at variable operating conditions. Energ. Convers. Manage. 45(2003), 11–12, 1949–1961.
[18] Taner T.: Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations. Energy 143(2018), 15, 284–294.
[19] El-Emam R.S., Dincer I., Naterer G.F.: Energy and exergy analyses of an integrated SOFC and coal gasification system. Int. J. Hydrogen Energ. 37(2012), 2, 1689–1697.
[20] Granovskii M., Dincer I., Rosen M.A.: Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int. J. Hydrogen Energ. 31(2006), 3, 337–352.

Date

2021.03.31

Type

Article

Identifier

DOI: 10.24425/ather.2021.136954

Source

Archives of Thermodynamics; 2021; vol. 42; No 1; 183-204

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×