Details

Title

Fluidized bed in gravitational shelf dryers: optimization calculation

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

3

Affiliation

Artyukhova, Nadiia : Sumy State University, Oleg Balatskyi Academic and Research Institute of Finance, Economics and Management, Department of Marketing, Rymskogo-Korsakova st. 2, 40007, Sumy, Ukraine ; Krmela, Jan : Alexander Dubček University of Trenčín, Faculty of Industrial Technologies in Púchov, Department of Numerical Methods and Computational Modeling, Ivana Krasku 491/30, 020 01 Púchov, Slovakia ; Krmelová, Vladimíra : Alexander Dubček University of Trenčín, Faculty of Industrial Technologies in Púchov, Department of Material Technologies and Environment, Ivana Krasku 491/30, 020 01 Púchov, Slovakia ; Artyukhov, Artem : Sumy State University, Oleg Balatskyi Academic and Research Institute of Finance, Economics and Management, Department of Marketing, Rymskogo-Korsakova st. 2, 40007, Sumy, Ukraine ; Gavendová, Mária : Alexander Dubček University of Trenčín, Faculty of Industrial Technologies in Púchov, Department of Material Technologies and Environment, Ivana Krasku 491/30, 020 01 Púchov, Slovakia

Authors

Keywords

multistage gravitational shelf dryer ; fluidized bed ; hydrodynamics ; motion trajectory ; simulation of engineering calculation

Divisions of PAS

Nauki Techniczne

Coverage

e137388

Bibliography

  1.  M. Kwauk, Fluidization: Idealized and bubbleless, with application, Science Press, Beijing, 1992.
  2.  D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions with applications, Academic Press, San Diego, 1994.
  3.  W.-C. Yang, Handbook of fluidizfition and fluid-particle systems, Marcel Dekker, New York, 2003.
  4.  L.G. Gibilaro, Fluidization-dynamics. The formulation and applications of a predictive theory for the fluidized state, Butterworth- Heinemann, Woburn, 2001.
  5.  P. Muralidhar, E. Bhargav, and C. Sowmya, “Novel techniques of granulation: a review”, Int. Res. J. Pharm. 7(10), 8–13 (2016).
  6.  H. Stahl, “Comparing Different Granulation Techniques”, Pharm. Technol. Eur. 16(11), 23–33 (2004).
  7.  D. Parikh, Handbook of Pharmaceutical Granulation Technology, Informa Healthcare, 2009.
  8.  H. Stahl, Comparing Granulation Method, Hürth: GEA Pharma Systems, 2010.
  9.  H.K. Solanki, T. Basuri, J.H. Thakkar, and C.A. Patel, “Recent advances in granulation technology” Int. J. Pharm. Sci. Rev. Res. 5(3), 48–54 (2010).
  10.  S. Srinivasan, “Granulation techniques and technologies: recent progresses”, Bioimpacts 5(1), 55–63 (2015).
  11.  M.A. Saikh, “A technical note on granulation technology: a way to optimize granules”, Int. J. Pharm. Sci. Rev. Res. 4, 55–67 (2013).
  12.  P. Patel, D. Telange, and N. Sharma, “Comparison of Different Granulation Techniques for Lactose Monohydrate”, Int. J. Pharm. Sci. Drug. Res. 3, 222–225 (2011).
  13.  V.A. Kirsanov and M.V. Kirsanov, Effect of Structural Parameters of Cascade Elements on Effectiveness of Pneumatic Classification”, Chem. Pet. Eng. 49, 707–711 (2014).
  14.  V.A. Kirsanov and M.V. Kirsanov, “Hydrodynamic Characteristics of Classification Process in Pneumatic Classifier with Continuous Shelves”, Chem. Pet. Eng. 54, 71–74 (2018).
  15.  M. Yukhymenko, R. Ostroha, A. Lytvynenko, Y. Mikhajlovskiy, and J. Bocko, “Cooling Process Intensification for Granular Mineral Fertilizers in a Multistage Fluidized Bed Device”, Lecture Notes in Mechanical Engineering, pp. 249–257, Springer, Cham, 2020.
  16.  M. Yukhymenko and A. Lytvynenko, “Pneumatic Classification Of The Granular Materials In The “Rhombic” Apparatus”, J. Manuf. Ind. Eng. 1‒2, 1–3 (2014).
  17.  E. Barsky and M. Barsky, “Master curve of separation processes”, Phys. Sep. Sci. Eng. 13(1), 1–13 (2004).
  18.  E. Barsky and M. Barsky. Cascade Separation of Powders, Cambridge Int Science Publishing, 2006.
  19.  А.E. Artyukhov, V.K. Obodiak, P.G. Boiko, and P.C. Rossi, “Computer modeling of hydrodynamic and heat-mass transfer processes in the vortex type granulation devices”, in CEUR Workshop Proceedings, 2017, 1844, pp. 33‒47.
  20.  A.E. Artyukhov and N.A. Artyukhova, “Utilization of dust and ammonia from exhaust gases: new solutions for dryers with different types of fluidized bed”, J. Environ. Health Sci. Eng. 16(2), 193‒204 (2018).
  21.  A. Artyukhov, N.Artyukhova, A. Ivaniia, and R. Galenin, “Progressive equipment for generation of the porous ammonium nitrate with 3D nanostructure”, Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Applications and Properties, NAP 2017, 2017, p. 03NE06.
  22.  A. Artyukhov, N. Artyukhova, J. Krmela, and V. Krmelova, “Complex designing of granulation units with application of computer and software modeling: Case “Vortex granulator”. IOP Conf. Ser.: Mater. Sci. Eng. 776(1), 012016 (2020).
  23.  N.A. Artyukhova, “Multistage finish drying of the N4HNO3 porous granules as a factor for nanoporous structure quality improvement”, J. Nano- Electron. Phys. 10 (3), 03030-1-03030-5 (2018).
  24.  A.E. Artyukhov, N.O. Artyukhova, and A.V. Ivaniia, “Creation of software for constructive calculation of devices with active hydrodynamics”, in Proceedings of the 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET 2018), 2018, pp. 139‒142.
  25.  A.E. Artyukhov, N.A. Artyukhova, A.V. Ivaniia, and J. Gabrusenoks, “Multilayer modified NH4NO3 granules with 3D nanoporous structure: effect of the heat treatment regime on the structure of macro- and mezopores”, in Proc IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF-2017), 2017, pp. 315–318.
  26.  A. Artyukhov, N. Artyukhova, R. Ostroha, M. Yukhymenko, J. Bocko, and J. Krmela, “Convective drying in the multistage shelf dryers: theoretical bases and practical implementation”, in Drying Unit Operations, pp. 140‒163, IntechOpen, UK, 2019.
  27.  A.E. Artyukhov and V.I. Sklabinskiy, “Application of vortex three-phase separators for improving the reliability of pump and compressor stations of hydrocarbon processing plants”, IOP Conf. Ser.: Mater. Sci. Eng. 233(1), 012014 (2017).
  28.  K. Hiltunen, A. Jasberg, S. Kallio, H. Karema, M. Kataja, A. Koponen, M. Manninen, and V. Taivassalo, Multiphase Flow Dynamics: Theory and Numerics, VTT Technical Research Centre of Finland, Edita Prima Oy, 2009.
  29.  C. Crowe, Multiphase flow handbook, Boca Raton, Taylor & Francis Group, 2006.
  30.  D.L. Marchisio and R.O. Fox, Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge Series in Chemical Engineering. Cambridge University Press, 2013.
  31.  D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions with applications, Academic Press, San Diego, 1994.
  32.  E.G. Sinaiski, Hydromechanics: theory and fundamentals, Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA, 2010.
  33.  A.E. Artyukhov and N.O. Artyukhova, “Technology and the main technological equipment of the process to obtain NH4NO3 with nanoporous structure”, Springer Proc. Phys. 221, 585–594 (2019).
  34.  K.P. Bowman, J.C. Lin, A. Stohl, R. Draxler, P. Konopka, A. Andrews, and D. Brunner, “Input Data Requirements for Lagrangian Trajectory Models”, Bull. Am. Meteorol. Soc. 94, 1051‒1058 (2013).
  35.  M. Rybalko, E. Loth, and D. Lankford, “A Lagrangian particle random walk model for hybrid RANS/LES turbulent flows”, Powder Technol. 221, 105‒113 (2012).
  36.  A.I. Leont’ev, Yu. A. Kuzma-Kichta, and I. A. Popov, “Heat and mass transfer and hydrodynamics in swirling flows (review)”, Therm. Eng. 64(2), 111‒126 (2017).
  37.  M. Honkanen, Direct optical measurement of fluid dynamics and dispersed phase morphology in multiphase flows, p. 193, PhD. Thesis, Tampere Univetsity of Technology, 2006.
  38.  M.J.V. Goldschmidt, G.G.C. Weijers, R. Boerefijn, and J.A.M Kuipers, “Discrete element modelling of fluidised bed spray granulation”, Powder Technol. 138, 39‒45 (2003).
  39.  M. Khanali, S. Rafiee, A. Jafari, and A. Banisharif, “Study of Residence Time Distribution of Rough Rice in a Plug Flow Fluid Bed Dryer”, Int. J. Adv. Sci. Technol. 48, 103‒114 (2012).
  40.  S. Banerjee and R.K. Agarwal, “Review of recent advances in process modeling and computational fluid dynamics simulation of chemical- looping combustion”, Int. J. Energy Clean Environ. 18(1), 1‒37 (2018).
  41.  Certificate of copyright registration No. 79141UA, UA: Computer program “Multistage fluidizer”, 2018.
  42.  B. Paprocki, A. Pregowska and J. Szczepanski, “Optimizing information processing in brain-inspired neural networks”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 225‒233 (2020), doi: 10.24425/bpasts.2020.131844.
  43.  W. Jefimowski, A. Nikitenko, Z. Drążek, and M. Wieczorek, “Stationary supercapacitor energy storage operation algorithm based on neural network learning system”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 733‒738 (2020), doi: 10.24425/bpasts.2020.134176.

Date

26.05.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.137388

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; Early Access; e137388
×