Details

Title

Sliding mode observers for fault identification in linear systems not satisfying matching and minimum phase conditions

Journal title

Archives of Control Sciences

Yearbook

2021

Volume

vol. 31

Issue

No 2

Affiliation

Zhirabok, Alexey : Far Eastern Federal University, Vladivostok 690091, Russia ; Zhirabok, Alexey : Institute of Marine Technology Problems, Vladivostok, 690091, Russia ; Zuev, Alexander : Institute of Marine Technology Problems, Vladivostok, 690091, Russia ; Filaretov, Vladimir : Institute of Automation and Processes of Control, Vladivostok, 690014, Russia ; Shumsky, Alexey : Far Eastern Federal University, Vladivostok 690091, Russia

Authors

Keywords

linear systems ; faults ; identification ; disturbances ; sliding mode observers

Divisions of PAS

Nauki Techniczne

Coverage

253-266

Publisher

Committee of Automatic Control and Robotics PAS

Bibliography

[1] H. Alwi and C. Edwards: Fault tolerant control using sliding modes with on-line control allocation. Automatica, 44 (2008), 1859–1866, DOI: 10.1016/j.automatica.2007.10.034.
[2] H. Alwi, C. Edwards, and C. Tan: Sliding mode estimation schemes for incipient sensor faults. Automatica, 45 (2009), 1679–1685, DOI: 10.1016/j.automatica.2009.02.031.
[3] F. Bejarano, L. Fridman, and A. Pozhyak: Unknown input and state estimation for unobservable systems. SIAM J. Control and Optimization, 48 (2009), 1155–1178. DOI: 10.1137/070700322.
[4] F. Bejarano and L. Fridman: High-order sliding mode observer for linear systems with unbounded unknown inputs. Int. J. Control, 83 (2010), 1920– 1929, DOI: 10.1080/00207179.2010.501386.
[5] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki: Diagnosis and Fault-Tolerant Control. Berlin: Springer-Verlag, 2006.
[6] A. Brahim, S. Dhahri, F. Hmida, and A. Sellami: Simultaneous actuator and sensor faults reconstruction based on robust sliding mode observer for a class of nonlinear systems. Asian J. Control, 19 (2017), 362–371, DOI: 10.1002/asjc.1359.
[7] J. Chan, C. Tan, and H. Trinh: Robust fault reconstruction for a class of infinitely unobservable descriptor systems. Int. J. Systems Science, (2017), 1–10. DOI: 10.1080/00207721.2017.1280552.
[8] L. Chen, C. Edwards, H. Alwi, and M. Sato: Flight evaluation of a sliding mode online control allocation scheme for fault tolerant control. Automatica, 144 (2020), DOI: 10.1016/j.automatica.2020.108829.
[9] M. Defoort, K. Veluvolu, J. Rath, and M. Djemai: Adaptive sensor and actuator fault estimation for a class of uncertain Lipschitz nonlinear systems. Int. J. Adaptive Control and Signal Processing, 30 (2016), 271–283, DOI: 10.1002/acs.2556.
[10] S. Ding: Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems. London: Springer-Verlag, 2014.
[11] C. Edwards and S. Spurgeon: On the development of discontinuous observers . Int. J. Control, 59 (1994), 1211–1229, DOI: 10.1080/ 00207179408923128.
[12] C. Edwards, S. Spurgeon, and R. Patton: Sliding mode observers for fault detection and isolation. Automatica, 36 (2000), 541–553, DOI: 10.1016/S0005-1098(99)00177-6.
[13] C. Edwards, H. Alwi, and C. Tan: Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems. Int. J. Applied Mathematics and Computer Science, 22 (2012), 109–124, DOI: 10.2478/v10006-012-0008-7.
[14] V. Filaretov, A. Zuev, A. Zhirabok, and A. Protcenko: Development of fault identification system for electric servo actuators of multilink manipulators using logic-dynamic approach. J. Control Science and Engineering, 2017 (2017), 1–8, DOI: 10.1155/2017/8168627.
[15] T. Floquet, C. Edwards, and S. Spurgeon: On sliding mode observers for systems with unknown inputs. Int. J. Adaptive Control and Signal Processing, 21 (2007), 638–65, DOI: 10.1002/acs.958.
[16] L. Fridman, A. Levant, and J. Davila: Observation of linear systems with unknown inputs via high-order sliding-modes. Int. J. Systems Science, 38 (2007), 773–791, DOI: 10.1080/00207720701409538.
[17] L. Fridman, Yu. Shtessel, C. Edwards, and X. Yan: High-order slidingmode observer for state estimation and input reconstruction in nonlinear systems. Int. J. Robust and Nonlinear Control, 18 (2008), 399–412, DOI: 10.1002/rnc.1198.
[18] R. Hmidi, A. Brahim, F. Hmida, and A. Sellami: Robust fault tolerant control design for nonlinear systems not satisfying matching and minimum phase conditions. Int. J. Control, Automation and Systems, 18 (2020), 1–14, DOI: 10.1007/s12555-019-0516-4.
[19] H. Rios, D. Efimov, J. Davila, T. Raissi, L. Fridman, and A. Zolghadri: Non-minimum phase switched systems: HOSM based fault detection and fault identification via Volterra integral equation. Int. J. Adaptive Control and Signal Processing, 28 (2014), 1372–1397, DOI: 10.1002/acs.2448.
[20] I. Samy, I. Postlethwaite, and D. Gu: Survey and application of sensor fault detection and isolation schemes. Control Engineering Practice, 19 (2011), 658–674, DOI: 10.1016/j.conengprac.2011.03.002.
[21] C. Tan and C. Edwards: Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. Int. J. Robust Nonlinear Control, 13 (2003), 443–463, DOI: 10.1002/rnc.723.
[22] C. Tan and C. Edwards: Robust fault reconstruction using multiple sliding mode observers in cascade: development and design. Proc. 2009 American Control Conf., St. Louis, USA, (2009), DOI: 10.1109/ACC.2009.5160176.
[23] V. Utkin: Sliding Modes in Control Optimization, Berlin: Springer, 1992.
[24] X. Wang, C. Tan, and G. Zhou: A novel sliding mode observer for state and fault estimation in systems not satisfying matching and minimum phase conditions. Automatica, 79 (2017), 290–295, DOI: 10.1016/ j.automatica.2017.01.027.
[25] X. Yan and C. Edwards: Nonlinear robust fault reconstruction and estimation using a sliding modes observer. Automatica, 43 (2007), 1605–1614, DOI: 10.1016/j.automatica.2007.02.008.
[26] J. Yang, F. Zhu, and X. Sun: State estimation and simultaneous unknown input and measurement noise reconstruction based on associated observers. Int. J. Adaptive Control and Signal Processing, 27 (2013), 846–858, DOI: 10.1002/acs.2360.
[27] A. Zhirabok: Nonlinear parity relation: A logic-dynamic approach. Automation and Remote Control, 69 (2008), 1051-1064, DOI: 10.1134/ S0005117908060155.
[28] A. Zhirabok, A. Shumsky, and S. Pavlov: Diagnosis of linear dynamic systems by the nonparametric method. Automation and Remote Control, 78 (2017), 1173–1188, DOI: 10.1134/S0005117917070013.
[29] A. Zhirabok, A. Shumsky, S. Solyanik, and A. Suvorov: Fault detection in nonlinear systems via linear methods. Int. J. Applied Mathematics and Computer Science, 27 (2017), 261–272, DOI: 10.1515/amcs-2017-0019.
[30] A. Zhirabok, A. Zuev, and A. Shumsky: Methods of diagnosis in linear systems based on sliding mode observers. J. Computer and Systems Sciences Int., 58 (2019), 898–914, DOI: 10.1134/S1064230719040166.
[31] A. Zhirabok, A. Zuev, andV. Filaretov: Fault identification in underwater vehicle thrusters via sliding mode observers. Int. J. Applied Mathematics and Computer Science, 30 (2020), 679–688, DOI: 10.34768/amcs-2020-0050.

Date

2021.07.01

Type

Article

Identifier

DOI: 10.24425/acs.2021.137417
×