Details

Title

Sound Radiation Characteristics of Acoustically Thick Composite Cylinders and Their Experimental Verification

Journal title

Archives of Acoustics

Yearbook

2021

Volume

vol. 46

Issue

No 3

Affiliation

Josephine Kelvina Florence, S. : Structures Group, U. R. Rao Satellite Centre, Bangalore, India-560017 ; Renji, K. : Advanced Technology Development Group, U. R. Rao Satellite Centre Bangalore, India-560017

Authors

Keywords

radiation resistance ; radiation efficiency ; cylindrical shells ; composites ; ring frequency ; critical frequency ; SEA

Divisions of PAS

Nauki Techniczne

Coverage

519-530

Publisher

Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics

Bibliography

1. Bordoni P.G., Gross W. (1948), Sound radiation from a finite cylinder, Journal of Mathematics and Physics, 27(1–4): 242–252, doi: 10.1002/sapm1948271241.
2. Burroughs C.B. (1984), Acoustic radiation from fluid-loaded infinite circular cylinders with doubly periodic ring supports, The Journal of the Acoustical Society of the America, 75(3): 715–722, doi: 10.1121/1.390582.
3. Cao X., Hua H., Ma C. (2012), Acoustic radiation from shear deformable stiffened laminated cylindrical shells, Journal of Sound and Vibration, 331(3): 651–670, doi: 10.1016/j.jsv.2011.10.006.
4. Cox T.J., D’Antonio P. (2004), Acoustic Absorbers and Diffusers: Theory, Design and Application, New York: CRC Press.
5. Fahy F.J. (1969), Vibration of containing structure by sound in the contained fluid, Journal of Sound and Vibration, 10(3): 490–512, doi: 10.1016/0022-460x(69)90228-4.
6. Fahy F.J. (1970), Response of a cylinder to random sound in the contained fluid, Journal of Sound and Vibration, 13(2): 171–194, doi: 10.1016/s0022-460x(70)81172-5.
7. Fyfe K.R., Ismail F. (1989), An investigation of the acoustic properties of vibrating finite cylinders, Journal of Sound and Vibration, 128(3): 361–375, doi: 10.1016/0022-460x(89)90780-3.
8. Ghinet S., Atalla N., Osman H. (2006), Diffuse field transmission into infinite sandwich composite and laminate composite cylinders, Journal of Sound and Vibration, 289(4–5): 745–778, doi: 10.1016/j.jsv.2005.02.028.
9. Josephine Kelvina Florence S., Renji K., Subramanian K. (2018), Modal density of honeycomb sandwich composite cylindrical shells considering transverse shear deformation, International Journal of Acoustics and Vibration, 23(3): 83–92, doi: 10.20855/ijav.2018.23.11241 .
10. Laulagnet B., Guyader J.L. (1989), Modal analysis of a shell’s acoustic radiation in light and heavy fluids, Journal of Sound and Vibration, 131(3): 397–415, doi: 10.1016/0022-460x(89)91001-8.
11. Le Bot A., Cotoni V. (2010), Validity diagrams of statistical energy analysis, Journal of Sound and Vibration, 329(2): 221–235, doi: 10.1016/j.jsv.2009.09.008.
12. Lin T.R., Mechefske C., O’Shea P. (2011), Characteristics of modal sound radiation of finite cylindrical shells, Journal of Vibration and Acoustics, 133(5): 051011–051016, doi: 10.1115/1.4003944.
13. Lyon R.H. (1975), Statistical Energy Analysis of Dynamical Systems: Theory and Applications, Cambridge, MA: MIT Press.
14. Manning J.E., Maidanik G. (1964), Radiation properties of cylindrical shells, The Journal of the Acoustical Society of the America, 36(9): 1691–1698, doi: 10.1121/1.1919266.
15. Miller V.J., Faulkner L.L. (1983), Prediction of aircraft interior noise using the statistical energy analysis method, Journal of Vibration,Acoustics,Stress and Reliability in Design, 105(4): 512–518, doi: 10.1115/1.3269136.
16. Norton M.P. (1989), Fundamentals of Noise and Vibration Analysis for Engineers, England: Cambridge University Press.
17. Qiao Y., Chen H.B., Luo J.L. (2013), Estimation of shell radiation efficiency using a FEM-SmEdA algorithm, Journal of Vibroengineering, 15(3): 1130–1146.
18. Ramachandran P., Narayanan S. (2007), Evaluation of modal density, radiation efficiency and acoustic response of longitudinally stiffened cylindrical shell, Journal of Sound and Vibration, 304(1–2): 154–174, doi: 10.1016/j.jsv.2007.02.020.
19. Renji K., Josephine Kelvina Florence S. (2020), Critical frequencies of composite cylindrical Shells, International Journal of Acoustics and Vibration, 25(1): 79–87, doi: 10.20855/ijav.2020.25.11572.
20. Renji K., Josephine Kelvina Florence S., Sameer Deshpande (2019), Characteristics of in-plane waves in composite plates, International Journal of Acoustics and Vibration, 24(3): 458–466, doi: 10.20855/ijav.2019.24.31290.
21. Renji K., Josephine Kelvina Florence S., Sameer Deshpande (2020), An Experimental investigation of modal densities of composite honeycomb sandwich cylindrical shells, International Journal of Acoustics and Vibration, 25(1): 112–120, doi: 10.20855/ijav.2020.25.11626.
22. Renji K., Nair P.S., Narayanan S. (1998), On acoustic radiation resistance of plates, Journal of Sound and Vibration, 212(4): 583–598, doi: 10.1006/jsvi.1997.1438.
23. Reynolds D.D. (1981), Engineering Principles of Acoustics Noise and Vibration, Boston, MA: Allyn and Bacon.
24. Runkle C.J., Hart F.D. (1969), The Radiation Resistance of Cylindrical Shells, NASA CR-1437.
25. Squicciarini G., Putra A., Thompson D.J., Zhang X., Salim M.A. (2015), Use of a reciprocity technique to measure the radiation efficiency of a vibrating structure, Applied Acoustics, 89: 107–121, doi: 10.1016/j.apacoust.2014.09.013.
26. Stephanishen P.R. (1978), Radiated power and radiation loading of cylindrical surfaces with non-uniform velocity distribution, The Journal of the Acoustical Society of the America, 63(2): 328–338, doi: 10.1121/1.381743.
27. Sun Y., Yang T., Chen Y. (2018), Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells, Journal of Sound and Vibration, 424: 64–77, doi: 10.1016/ j.jsv.2018.03.004.
28. Szechenyi E. (1971), Modal densities and radiation efficiencies of unstiffened cylinders using statistical methods, Journal of Sound and Vibration, 19(1): 65– 81, doi: 10.1016/0022-460x(71)90423-8.
29. Wang C., Lai J.C.S. (2000), The sound radiation efficiency of finite length acoustically thick circular cylindrical shells under mechanical excitation. I: Theoretical analysis, Journal of Sound and Vibration, 232(2): 431–447, doi: 10.1006/jsvi.1999.2749.
30. Wang C., Lai J.C.S. (2001), The sound radiation efficiency of finite length circular cylindrical shells under mechanical excitation II: Limitations of the infinite length model, Journal of Sound and Vibration, 241(5): 825–838, doi: 10.1006/jsvi.2000.3338.
31. Yin X.W., Liu L.J., Hua H.X., Shen R.Y. (2009), Acoustic radiation from an infinite laminate composite cylindrical shells with doubly periodic rings, Journal of Vibration and Acoustics, 131(1): 011005–011009, doi: 10.1115/1.2980376.
32. Zhao X., Zhang B., Li Y. (2015), Vibration and acoustic radiation of an orthotropic composite cylindrical shell in a hygroscopic environment, Journal of Vibration and Control, 23(4): 673–692, doi: 10.1177/1077546315581943.

Date

2021.09.21

Type

Article

Identifier

DOI: 10.24425/aoa.2021.138144
×