Details

Title

The Strength Behaviour of Transitional Group A-2-7 Soil Stabilised with Fly Ash and Lime Powder

Journal title

Archives of Mining Sciences

Yearbook

2021

Volume

vol. 66

Issue

No 4

Affiliation

Ahmad, Omar Asad : Amman Arab University, Civil Engineering Department, Faculty of Engineering, P.O Box. 2234, Amman 11953, Jordan

Authors

Keywords

soil stabilisation ; lime powder ; fly ash ; TGA-2-7 soil ; engineering index

Divisions of PAS

Nauki Techniczne

Coverage

511-522

Publisher

Committee of Mining PAS

Bibliography

[1] J.I. Chang, G.C. Cho, Geotechnical Engineering Behaviors of Gellan Gum Biopolymer Treated Sand. Canadian Geotechnical Journal 53 (10), 1-38 (2016a). DOI: https://doi.org/10.1139/cgj-2015-0475
[2] J.I. Chang, G.C. Cho, Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering. Sustainability 8, 251-273 (2016b). DOI: https://doi.org/10.3390/su8030251
[3] C. Guo, Y. Cui, Pore Structure Characteristics of Debris Flow Source Material in the Wenchuan Earthquake Area. Engineering Geology 267, 105499 (2020). DOI: https://doi.org/10.1016/j.enggeo.2020.105499
[4] J. Park, J.C. Santamarina, Revised Soil Classification System for Coarse-Fine Mixtures. J. Geotech. Geoenviron. Eng. 143 (8), 04017039 (2017). DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001705
[5] D . Peng, Q. Xu, F. Liu, Y. He, S. Zhang, X. Qi, K. Zhao, X. Zhang, Distribution and Failure Modes of the Landslides in Heitai Terrace, China. Eng. Geol. 236, 97-110 (2018). DOI: https://doi.org/10.1016/j.enggeo.2017.09.016
[6] Y . F.Cui, X.J. Zhou, C.X. Guo, Experimental Study on the Moving Characteristics of Fine Grains in Wide Grading Unconsolidated Soil Under Heavy Rainfall. J. Mt. Sci. 14 (3), 417-431 (2017). DOI: https://doi.org/10.1007/s11629-016-4303-x
[7] W.B. Chen, K. Liu, W.Q. Feng, L. Borana, J.H. Yin, Influence of Matric Suction on Nonlinear Time-Dependent Compression Behavior of a Granular Fill Material. Acta Geotechnica 15 (3), 615-633 (2020). DOI: https://doi.org/10.1007/s11440-018-00761-y
[8] Z. Zhou, H. Yang, X. Wang, B. Liu, Model Development and Experimental Verification for Permeability Coefficient of Soil-Rock Mixture. Int. J. Geomech. 17 (4), 04016106 (2017). DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000768
[9] R . Salgado, P. Bandini, A. Karim, Shear Strength and Stiffness of Silty Sand. J. Geotech. Geoenviron. Eng. 126 (5), 451-462 (2000). DOI: https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451)
[10] T. Ueda, T. Matsushima, Y. Yamada, Effect of Particle Size Ratio and Volume Fraction on Shear Strength of Binary Granular Mixture. Granular Matter 13 (6), 731-742 (2011). DOI: https://doi.org/10.1007/s10035-011-0292-1
[11] P . Ruggeri, D. Segato, V.M.E. Fruzzetti, G. Scarpelli, Evaluating the Shear Strength of a Natural Heterogeneous Soil Using Reconstituted Mixtures. Géotechnique 66 (11), 941-946 (2016). DOI: https://doi.org/10.1680/jgeot.15.P.022
[12] M.M. Monkul, G. Ozden, Compressional Behaviour of Clayey Sand and Transition Fines Content. Engineering Geology 89 (3), 195-205 (2007). DOI: https://doi.org/10.1016/j.enggeo.2006.10.001
[13] T.G. Ham, Y. Nakata, R.P. Orense, M. Hyodo. Influence of Gravel on the Compression Characteristics of Decomposed Granite Soil.” J. Geotech. Geoenviron. Eng. 136 (11), 1574-1577 (2010). DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000370
[14] N.J. Jiang, K. Soga, M. Kuo, Microbially Induced Carbonate Precipitation for Seepage-Induced Internal Erosion Control in Sand-Clay Mixtures. Journal of Geotechnical and Geoenvironmental Engineering 143 (3), 04016100 (2016). DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559
[15] X .S. Shi, J. Yin, Experimental and Theoretical Investigation on the Compression Behavior of Sand-Marine Clay Mixtures Within Homogenization Framework. Comput. Geotech 90 (Oct), 14-26 (2017). DOI: https://doi.org/10.1016/j.compgeo.2017.05.015
[16] X .S. Shi, I. Herle, D. Muir Wood, A Consolidation Model for Lumpy Composite Soils in Open-Pit Mining. Géotechnique 68 (3), 189-204 (2018). DOI: https://doi.org/10.1680/jgeot.16.P.054
[17] H .K. Dash, T.G. Sitharam, B.A. Baudet, Influence of Nonplastic Fines on the Response of a Silty Sand to Cyclic Loading. Soils and Foundations 50 (5), 695-704 (2010). DOI: https://doi.org/10.3208/sandf.50.695
[18] L . Zuo, B.A. Baudet, Determination of the Transitional Fines Content of Sand-non-Plastic Fines Mixtures. Soils Found. 55 (1), 213-219 (2015). DOI: https://doi.org/10.1016/j.sandf.2014.12.017
[19] C. Chu, Z. Wu, Y. Deng, Y. Chen, Q. Wang, Intrinsic Compression Behavior of Remolded Sand-Clay Mixture. Canadian Geotechnical Journal 54 (7), 926-932 (2017). DOI: https://doi.org/10.1139/cgj-2016-0453
[20] Z. Wu, Y. Deng, Y. Cui, Y. Chen, Q. Wang, Q. Feng, Investigations on Secondary Compression Behaviours of Artificial Soft Sand-Clay Mixtures. Soils Found. 59 (2), 326-336 (2019). DOI: https://doi.org/10.1016/j.sandf.2018.11.008
[21] W. Zhou, K. Xu, G. Ma, L. Yang, X. Chang, Effects of Particle Size Ratio on the Macro- and Microscopic Behaviors of Binary Mixtures at the Maximum Packing Efficiency State. Granular Matter 18 (4), 81 (2016). DOI: https://doi.org/10.1007/s10035-016-0678-1
[22] X .S. Shi, J. Yin, Estimation of Hydraulic Conductivity of Saturated Sand-Marine Clay Mixtures with a Homogenization Approach. Int. J. Geomech. 18 (7), 04018082 (2018). DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001190
[23] X .S. Shi, J. Yin, J. Zhao, Elastic Visco-Plastic Model for Binary Sand-Clay Mixtures with Applications to One- Dimensional Finite Strain Consolidation Analysis. J. Eng. Mech. 145 (8), 04019059 (2019a). DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001623
[24] X .S. Shi, J. Zhao, J. Yin, Z. Yu, An Elastoplastic Model for Gap-Graded Soils Based on Homogenization Theory. Int. J. Solids Struct. 163 (May), 1-14 (2019b). DOI: https://doi.org/10.1016/j.ijsolstr.2018.12.017
[25] T.S. Nagaraj, F.J. Griffiths, R.C. Joshi, A. Vatsala, B.R.S. Murthy, Change in Pore-Size Distribution due to Consolidation of Clays Discussion. Géotechnique 40 (2), 303-309 (1990). DOI: http://eprints.iisc.ac.in/id/eprint/35250
[26] M. Topolnicki (3-ed edition), In Situ Soil Mixing, In: K. Kirsch, A. Bell (Eds.), Ground Improvement, CRC Press, London (2013).
[27] FHWA-HRT-13-046, Federal Highway Administration Design Manual: Deep Mixing for Embankment and Foundation Support, U.S. Department of Transportation, Federal Highway Administration (2013).
[28] B .B. Broms, Deep Soil Stabilization: Design and Construction of Lime and Lime/Cement Columns. Royal Institute of Technology, Stockholm, Sweden (2003).
[29] Cement Deep Mixing (CDM), Design and Construction Manual for CDM Institute. Partial English Translation, Cement Deep Mixing Association of Japan, Tokyo, Japan, (1985).
[30] A.J. McGinn, T.D. O’Rourke, Performance of Deep Mixing Methods at Fort Point Channel. Federal Highway Administration, Washington, DC (2003).
[31] T. Kawasaki, A. Niina, S. Saitoh, R. Babasaki, Studies on Engineering Characteristics of Cement-Base Stabilized Soil. Takenaka Technical Research Report 19, 144-165 (1978).
[32] K. Uddin, A.S. Balasubramaniam, D.T. Bergado, Engineering Behavior of Cement-Treated Bangkok Soft Clay. Geotech. Eng. 28 (1), 89-119 (1997). DOI: http://worldcat.org/issn/00465828
[33] N. Cristelo, S. Glendinning, L. Fernandes, A.T. Pinto, Effects of Alkaline- Activated Fly Ash and Portland Cement on Soft Soil Stabilization. Acta Geotechnica 8 (4), 395-405 (2013). DOI: https://doi.org/10.1007/s11440-012-0200-9
[34] M. Zhang, H. Guo, T. El-Korchi, G. Zhang, M. Tao, Experimental Feasibility Study of Geopolymer as the Next- Generation Soil Stabilizer. Constr. Build. Mater. 47, 1468-1478 (2013). DOI: https://doi.org/10.1016/j.conbuildmat.2013.06.017
[35] S. Rios, N. Cristelo, T. Miranda, N. Arau, J. Oliveira, E. Lucas, Increasing the Reaction kinetics of Alkali-Activated Fly Ash Binders for Stabilization of a Silty Sand Pavement Sub-Base. Road Mater. Pavement Desing. 19 (1), 201- 222 (2016). DOI: https://doi.org/10.1080/14680629.2016.1251959
[36] H .H. Abdullah, M.A. Shahin, P. Sarker, Stabilisation of Clay with Fly-Ash Geopolymer Incorporating GGBFS. In: Proceedings of the second Proceedings of the Second World Congress on Civil, Structural and Environmental Engineering (CSEE’17), 1-8 (2017).
[37] A.B. Moghal, State of the Art Review on the Role of Fly Ashes in Geotechnical and Geo Environmental Applications. J. Mater. Civ. Eng. 29 (8), 04017072 (2017). DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001897
[38] S. Pourakbar, A. Asadi, B.B. Huat, N. Cristelo, M.H. Fasihnikoutalab, Application of Alkali-Activated Agro-Waste Reinforced with Wollastonite Fibers in Soil Stabilization. J. Mater. Civ. Eng. 29 (2), 04016206 (2016). DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001735
[39] Elkhebu, A. Zainorabidin, I. Bakar, B.K. Huat, L. Abdeldjouad, W. Dheyab, Alkaline Activation of Clayey Soil Using Potassium Hydroxide and Fly Ash. International Journal of Integrated Engineering 10 (9), 99-104 (2019). DOI: https://doi.org/10.30880/ijie.2018.10.09.016
[40] L . Abdeldjouad, A. Asadi, R.J. Ball, H. Nahazanan, B.K. Huat, W. Dheyab, A. Elkhebu, Effect of Clay Content on Soil Stabilization with Alkaline Activation. International Journal of Geosynthetics and Ground Engineering 5, (2019b). DOI: https://doi.org/10.1007/s40891-019-0157-y
[41] L . Abdeldjouad, A. Asadi, R.J. Ball, H. Nahazanan, B.K. Huat, Application of Alkali-Activated Palm Oil Fuel Ash Reinforced with Glass Fibers in Soil Stabilization. Soils and Foundations 59 (5), 1552-1561 (2019c). DOI: https://doi.org/10.1016/j.sandf.2019.07.008
[42] B .R. Phanikumar, E. Ramanjaneya, Compaction and Strength Characteristics of An Expansive Clay Stabilized with Lime Sludge and Cement. Soils and Foundations 60, 129-138 (2020). DOI: https://doi.org/10.1016/j.sandf.2020.01.007
[43] D .N. Little, E.H. Males, J.R. Prusinski, B. Stewart Cementitious Stabilization, A Research Report, A2J01, Committee on Cementitious stabilization. Louisiana State University (2016).
[44] Z.D. Zhu, S.Y. Liu, Utilisation of a New Soil Stabilizer for Silt Subgrade. Eng. Geol. 97 (3-4), 192-198 (2008). DOI: https://doi.org/10.1016/j.enggeo.2008.01.003
[45] X .B. Yu, B. Zhang, D. Cartweight, Beneficial Utilization of Lime Sludge for Subgrade Stabilization: A pilot investigation. Ohio Department of Transportation, Office of Research and Development (2010).

Date

2021.12.23

Type

Article

Identifier

DOI: 10.24425/ams.2021.139594
×