Effect of heat treatment on the surface morphology and optical properties of the Al2O3 thin film for use in solar cells

Journal title

Opto-Electronics Review








Szindler, Marek : Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, 7 Towarowa St., 44-100 Gliwice, Poland ; Szindler, Magdalena M. : Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego St., 44-100 Gliwice, Poland



antireflection coating ; atomic layer deposition method ; solar cells

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology


  1. Marks-Bielska, R. et al. The importance of renewable energy sources in Poland’s energy Energies 13, 1–23 (2020).
  2. Asfar, Y. et al. Evaluating Photovoltaic Performance Indoors. in 2012 38th IEEE Photovoltaic Specialists Conference (PVSC). 1948–1951 (IEEE, Austin, USA 2012).
  3. Ranjan, S. et al. Silicon solar cell production. Comput. Chem. Eng. 35, 1439–1453 (2011).
  4. Drygala, A. et al. Influence of laser texturization surface and atomic layer deposition on optical properties of polycrystalline silicon. Int. J. Hydrog. Energy 41, 7563–7567 (2016).
  5. Hou, G., Garcia, I. & Rey-Stolle, I. High-low refractive index stacks for broadband antireflection coatings for multijunction solar cells. Sol. Energy 217, 29–39 (2021).
  6. Dobrzański, L. A., Szindler, M., Drygała, A. & Szindler, M.M., Silicon solar cells with Al2O3 antireflection coating. Cen. Eur. J. Phys. 12, 666–670 (2014).
  7. Sarkar, S. & Pradhan, S. K. Silica-based antireflection coating by glancing angle deposition. Surf. Eng. 35, 982–985. (2019).
  8. Szindler, M. Szindler, M. M., Boryło, P. & Jung, T. Structure and optical properties of TiO2 thin films deposited by ALD Open Phys. 15, 1067–1071 (2017).
  9. Król, K. et al. Influence of atomic layer deposition temperature on the electrical properties of Al/ZrO2/SiO2/4H-SiC metal-oxide semiconductor structures. Phys. Status Solidi (A) 215, 1–7 (2018).
  10. Boryło, P. et al. Structure and properties of Al2O3 thin films deposited by ALD proces. Vacuum 131, 319–326 (2016).
  11. Drabczyk, K. et al. Comparison of diffused layer prepared using liquid dopant solutions and pastes for solar cell with screen printed electrodes. Microelectron. Int. 33, 167–171 (2016).
  12. Öğütman, K. et al. Spatial atomic layer deposition of aluminum oxide as a passivating hole contact for silicon solar Phys. Status Solidi (A) 217, 1–6 (2020).
  13. Drabczyk, K. et al. Electroluminescence imaging for determining the influence of metallization parameters for solar cell metal contacts. Sol. Energy 126, 14–21 (2016).
  14. Park, H. H. Inorganic materials by atomic layer deposition for perovskite solar cells. Nanomaterials 11, 1–22 (2021).
  15. Hossain, A. et al. Atomic layer deposition enabling higher efficiency solar cells: A review. Nano Materials 2, 204–226 (2020).
  16. Werner, F. et al. High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. Energy Procedia 8, 301–306 (2011).
  17. Werner, F., Cosceev, A. & Schmidt, J. Silicon surface passivation by Al2O3: Recombination parameters and inversion layer solar cells. Energy Procedia 27, 319–324 (2012).
  18. Swatowska, B. Antireflective and passivation properties of the photovoltaic structure with Al2O3 layer of different thickness. Microelectron. Int. 35, 177–180 (2018).






DOI: 10.24425/opelre.2021.139602