Details

Title

Thermodynamic analysis of cycle arrangements of the coal-fired thermal power plants with carbon capture

Journal title

Archives of Thermodynamics

Yearbook

2021

Volume

vol. 42

Issue

No 4

Affiliation

Kindra, Vladimir Olegovich : National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia ; Milukov, Igor Alexandrovich : National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia ; Shevchenko, Igor Vladimirovich : National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia ; Shabalova, Sofia Igorevna : National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia ; Kovalev, Dmitriy Sergeevich : National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia

Authors

Keywords

Combined cycle power plant ; Carbon capture and storage system ; Precombustion capture ; Post-combustion capture ; Oxy-fuel combustion

Divisions of PAS

Nauki Techniczne

Coverage

103-121

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] Friedlingstein P., O’Sullivan M., Jones M.W., Andrew R.M., Hauck J., Olsen A., Zaehle S.: Global carbon budget 2020. Earth Syst. Sci. Data 12(2020), 4, 3269–3340.
[2] Peters G.P., Andrew R.M., Canadell J.G., Friedlingstein P., Jackson R.B., Korsbakken J.I., Peregon A.: Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Change 10(2020), 1, 3–6.
[3] Le Quéré C., Korsbakken J.I., Wilson C., Tosun J., Andrew R., Andres R.J., van Vuuren D.P.: Drivers of declining CO2 emissions in 18 developed economies. Nat. Clim. Change 9(2019), 3, 213–217.
[4] Bui M., Adjiman C.S., Bardow A., Anthony E.J., Boston A., Brown S., Mac Dowell N.: Carbon capture and storage (CCS): The way forward. Energ. Environ. Sci. 11(2018), 5, 1062–1176.
[5] Tong D., Zhang Q., Zheng Y., Caldeira K., Shearer C., Hong C., Qin Y., Davis S.J.: Committed emissions from existing energy infrastructure jeopardize 1.5˚C climate target. Nature 572(2019), 7769, 373–377.
[6] Nejat P., Jomehzadeh F., Taheri M.M., Gohari M., Majid M.Z.A.: A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sust. Energ. Rev. 43(2015), 843–862.
[7] Vega F., Baena-Moreno F.M., Fernández L.M.G., Portillo E., Navarrete B., Zhang Z.: Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale. Appl. Energ. 260(2020), 114313.
[8] Fan J.L., Xu M., Li F., Yang L., Zhang X.: Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective. Appl. Energ. 229(2018), 326–334. [9] Porter R.T., Fairweather M., Kolster C., Mac Dowell N., Shah N.,Woolley R.M.: Cost and performance of some carbon capture technology options for producing different quality CO2 product streams. Int. J. Greenh. Gas Con. 57(2017), 185–195.
[10] Erlach B., Schmidt M., Tsatsaronis G.: Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion. Energy 36(2011), 6, 3804–3815.
[11] Atsonios K., Koumanakos A., Panopoulos K.D., Doukelis A., Kakaras E.: Techno-economic comparison of CO2 capture technologies employed with natural gas derived GTCC. In: Proc. ASME Turbo Expo: Turbine Tech. Conf. Exp, San Antonio, June 3–7, 2013, GT2013-95117, V002T07A018.
[12] Kanniche M., Gros-Bonnivard R., Jaud P., Valle-Marcos J., Amann J.M., Bouallou C.: Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl. Therm. Eng. 30(2010), 1, 53–62.
[13] Merkel T.C., Lin H., Wei X., Baker R.: Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membrane Sci. 359(2010), 126– 139.
[14] Merkel T.C., Zhou M., Baker R.W.: Carbon dioxide capture with membranes at an IGCC power plant. J. Membrane Sci. 389(2012), 441–450.
[15] Merkel T.C., Wei X., He Z., White L.S., Wijmans J.G., Baker R.W.: Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants. Ind. Eng. Chem. Res. 52(2013), 3, 1150–1159.
[16] Song C., Liu Q., Deng S., Li H., Kitamura Y.: Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges. Renew. Sust. Energ. Rev. 101(2019), 265–278.
[17] Chiesa P., Campanari S., Manzolini G.: CO2 cryogenic separation from combined cycles integrated with molten carbonate fuel cells. Int. J. Hydrogen Energ. 36(2011), 16, 10355–10365.
[18] Komarov I., Kharlamova D., Makhmutov B., Shabalova S., Kaplanovich I.: Natural gas-oxygen combustion in a super-critical carbon dioxide gas turbine combustor. E3S Web Conf. 178(2020), 01027.
[19] Allam, R., Martin, S., Forrest, B., Fetvedt, J., Lu, X., Freed, D., Brown Jr. G.W., Sasaki T., Itoh M., Manning J.: Demonstration of the Allam cycle: An update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture. Enrgy Proced. 114(2017), 5948–5966.
[20] Rogalev A., Kindra V., Osipov S., Rogalev N.: Thermodynamic analysis of the net power oxy-combustion cycle. In: Proc. 13th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, ETC13, Lausanne, April 8-12, 2018, ETC2019-030.
[21] Mukherjee S., Kumar P., Yang A., Fennell P.: Energy and exergy analysis of chemical looping combustion technology and comparison with pre-combustion and oxy-fuel combustion technologies for CO2 capture. J. Environ. Chem. Eng. 3(2015), 3, 2104–2114.
[22] Li J., Zhang H., Gao Z., Fu J., Ao W., Dai J.: CO2 capture with chemical looping combustion of gaseous fuels: An overview. Energ. Fuels 31(2017), 4, 3475–3524.
[23] Lyngfelt A., Linderholm C.: Chemical-looping combustion of solid fuels–status and recent progress. Enrgy Proced. 114(2017), 371–386.
[24] Naqvi R., Bolland O.: Multi-stage chemical looping combustion (CLC) for combined cycles with CO2 capture. Int. J. Greenh. Gas Con. 1(2007), 1, 19–30.
[25] Li K., Leigh W., Feron P., Yu H., Tade M.: Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements. Appl. Energ. 165(2016), 648–659.
[26] Duan L., Zhao M., Yang Y.: Integration and optimization study on the coal-fired power plant with CO2 capture using MEA. Energy 45(2012), 1, 107–116.
[27] Ma Y., Gao J., Wang Y., Hu J., Cui P.: Ionic liquid-based CO2 capture in power plants for low carbon emissions. Int. J. Greenh. Gas Con. 75(2018), 134–139.
[28] Oh S.Y., Binns M., Cho H., Kim J.K.: Energy minimization of MEA-based CO2 capture process. Appl. Energ. 169(2016), 353–362.
[29] Ho M.T., Allinson G.W., Wiley D.E.: Comparison of MEA capture cost for low CO2 emissions sources in Australia. Int. J. Greenh. Gas Con. 5(2011), 1, 49–60.
[30] Rogalev A., Kindra V., Osipov S.: Modeling methods for oxy-fuel combustion cycles with multicomponent working fluid. AIP Conf. Proc. 2047(2018), 1, 020020.
[31] Kunze C., Spliethoff H.: Assessment of oxy-fuel, pre-and post-combustion-based carbon capture for future IGCC plants. Appl. Energ. 94(2012), 109–116.
[32] Scaccabarozzi R., Gatti M., Martelli E.: Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle. Appl. Energ. 178(2016), 505–526.
[33] Rogalev A.N., Kindra V.O., Rogalev N.D., Sokolov V.P., Milukov I.A.: Methods for efficiency improvement of the semi-closed oxy-fuel combustion combined cycle. J. Phys. Conf. Ser. 1111(2018), 1, 012003.
[34] Cormos C.-Cr.: Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS). Energy 42(2012), 434–445.
[35] Ito E., Okada I., Tsukagoshi K., Muyama A., Masada J.: Development of key technologies for the next generation 1700C-class gas turbine. In: Proc. ASME Turbo Expo 2009: Power for Land, Sea, and Air, Orlando, June 8–12, 2009. 919–929.
[36] Ebrahimi A., Meratizaman M., Reyhani H.A., Pourali O., Amidpour M.: Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit. Energy 90(2015), 1298–1316. [37] Uddin F., Taqvi S.A., Memon I.: Process simulation and sensitivity analysis of indirect coal gasification using Aspen Plus model. J. Eng. Appl. Sci. 11(2016), 17, 10546–10552.
[38] Kapetaki Z., Brandani P., Brandani S., Ahn H.: Process simulation of a dualstage Selexol process for 95% carbon capture efficiency at an integrated gasification combined cycle power plant. Int. J. Greenh. Gas Con. 39(2015), 17–26.
[39] Kotowicz J., Brzeczek M.: Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations study. Energy 175 (2019), 1100–1120.
[40] Kvamsdal H.M., Jordal K., Bolland O.: A quantitative comparison of gas turbine cycles with CO2 capture. Energy 175(2007), 10–24.
[41] Gazzani M., Macchi E., Manzolini G.: CO2 capture in integrated gasification combined cycle with SEWGS – Part A: Thermodynamic performances. Fuel 105(2013), 206–219.

Date

2022.01.17

Type

Article

Identifier

DOI: 10.24425/ather.2021.139653

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×