A universal model for solar radiation exergy accounting: Case study of Tunisia

Journal title

Archives of Thermodynamics




vol. 43


No 2


Daghsen, Khaoula : University of Monastir, National Engineering School of Monastir, Rue Ibn El Jazzar, Monastir 5000, Rue Ibn Jazzar, Monastir 5035, Tunisia ; Daghsen, Khaoula : University of Tunis El Manar, National Engineering School of Tunis, Energy and Environment Laboratory LR21ES09, ENIT. BP 37, Le Belvedere 1002 ; Lounissi, Dorra : University of Tunis El Manar, National Engineering School of Tunis, Energy and Environment Laboratory LR21ES09, ENIT. BP 37, Le Belvedere 1002 ; Bouaziz, Nahla : University of Tunis El Manar, National Engineering School of Tunis, Energy and Environment Laboratory LR21ES09, ENIT. BP 37, Le Belvedere 1002



Solar energy ; Radiation ; Exergy radiation ; Exergy potential ; Regression

Divisions of PAS

Nauki Techniczne




The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences


[1] Li L., Lin J., Wu N., Xie S., Meng C., Zheng Y., Wang X., Zhao Y.: Review and outlook on the international renewable energy development. Energ. Built Environ. 3(2020), 2, 2666–1233.
[2] Papadis E., Tsatsaronis G.: Challenges in the decarbonization of the energy sector. Energy 205(2020), 118025.
[3] Hosseini S.E., Wahid M.A.: Renewable and sustainable energy reviews hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sust. Energ. Rev. 57(2016), 850–866.
[4] Multon B., Gaël R., Ruellan M., Ahmed H.B.: Situation énergétique mondiale à l’aube du 3ème millénaire. Perspectives offertes par les ressources renouvelables. La Revue 3EI SEE (2004), 20–33.
[5] Notton G.: Solar radiation for energy applications. In: Encyclopedia of Sustainable Technologies (A.M. Abraham, Ed.). Elsevier, 2017, 339–356.
[6] Sanan T. Mohammad, Hussain H. Al-Kayiem, Mohammed A. Aurybi, Ayad K. Khlief: Measurement of global and direct normal solar energy radiation in Seri Iskandar and comparison with other cities of Malaysia. Case Stud.Therm. Eng. 18, (2020), 100591.
[7] Cavaco A., Canhoto P., Pereira M.C.: Corrigendum to “Procedures for solar radiation data gathering and processing and their application to DNI assessment in southern Portugal” [Renew. Energ. 163(2021) 2208–2219]. Renew. Energ. 168(2021), 1405.
[8] Yorukoglu M., Celik A.N.: A critical review on the estimation of daily global solar radiation from sunshine duration. Energ. Convers. Manage. 47(2006), 15–16, 2441–2450.
[9] Bakirci K.: Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy 34(2009), 4, 485–501.
[10] Çengelet Y.A. Boles M.A.: Thermodynamics. An Engineering Approach (5th Edn.). McGraw-Hill, 2005.
[11] Dincer I., Rose M.A. (Eds.): Exergy, Energy, Environment, and Sustainable Development (3rd Edn.). Elsevier, 2021, 61–89.
[12] Ziebik A.: Thermodynamical motivation of the Polish energy policy. Arch. Thermodyn. 33(2012), 4, 3–21.
[13] Chu S.X., Liu L.H.: Analysis of terrestrial solar radiation exergy. Sol. Energy 83(2009), 8, 1390–1404.
[14] Candau Y.: On the exergy of radiation. Sol. Energy 75(2003), 3, 241–247.
[15] Gueymard Ch.A.: The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 76(2004), 4, 423–453.
[16] Kabelac S.: Exergy of solar radiation. Int. J. Energy Technol. Policy 3(2005), 1–2, 115–122.
[17] Joshi A.S., Dincer I., Reddy B.V: Development of new solar exergy maps. Int. J. Energ. Res. 33(2009), 8, 709–718.
[18] Alta D., Ertekin C., Evrendilek F.: Quantifying spatio-temporal dynamics of solar radiation exergy over Turkey. Renew. Energ. 35(2010), 12, 2821–2828.
[19] Jiménez-Muñoz J.C., Sobrino J.A., Mattar C.: Recent trends in solar exergy and net radiation at global scale. Ecol. Model. 228(2012), C, 59–65.
[20] Hepbasli A., Alsuhaibani Z.: Estimating and comparing the exergetic solar radiation values of various climate regions for solar energy utilization. Energ. Source. Part A 36(2014) 7, 764–773.
[21] Uçkan I.: Exergy analysis of solar radiation based on long term for Van city. J. Polytech. 20(2017), 3, 579–584.
[22] Petela R.: Energy of heat radiation. J. Heat Transfer 86(1964), 187–192.
[23] Spanner D.C.: Introduction to Thermodynamics. Academic Press, London, 1964.
[24] Jeter S.M.: Maximum conversion efficiency for the utilization of direct solar radiation. Sol. Energ. 26(1981), 231–236.
[25] Arslanoglu N.: Empirical modeling of solar radiation exergy for Turkey. Appl. Therm. Eng. 108(2016), 1033–1040.
[26] Jamil B., Bellos E.: Development of empirical models for estimation of global solar radiation exergy in India. J. Clean. Prod. 207(2019), 1–16.
[27] Khorasanizadeh H., Sepehrnia M.: Solar exergy evaluation and empirical model establishment; case study: Iran. Heliyon 6(2020), 12, 2405–8440, e05638.
[28] Lounissi D., Bouaziz N.: Exergetic analysis of an absorption/compression refrigeration unit based on R124/DMAC mixture for solar cooling. Int. J. Hydrog. Energ. 42(2017), 13, 8940–8947.
[29] Simpson A.P.: Decision making in energy: Advancing technical, environmental, and economic perspectives. PhD thesis, Stanford Univ. 2010, 28168075. gscholar&cbl=18750&diss=y (accessed 10 May 2010).
[30] Brand Correa L.I.: Exergy and useful work analysis as a tool for improved energy policy making: The case of the Colombian energy sector. MSc. thesis, Univ. of Edinburgh, 2014,
[31] Sciubba E.: Beyond thermoeconomics? The concept of extended exergy accounting and its application to the analysis and design of thermal systems. Exerg. Int. J. 1(2001), 2, 68–84.
[32] Abd Elbar A.R., Yousef M.S., Hassan H.: Energy, exergy, exergoeconomic and enviroeconomic (4E) evaluation of a new integration of solar still with photovoltaic panel. Clean. Prod. 233(2019), 665–680.
[33] Luminosu I., Fara L.: Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation. Energy 30(2005), 5, 731– 747.
[34] Sala Lizarraga J.M.P., Picallo-Perez A.: Exergy Analysis and Thermoeconomics of Buildings. Butterworth-Heinemann, 2020.
[35] Ghritlahre H.K., Sahu P.K.: A comprehensive review on energy and exergy analysis of solar air heaters. Arch. Thermodyn. 41(2020), 3, 183–222.
[36] Ghritlahre H.K.: An experimental study of solar air heater using arc shaped wire rib roughness based on energy and exergy analysis. Arch. Thermodyn. 42(2021), 3, 115–139.
[37] Sobhnamayan F., SarhaddF. i, Alavi M.A., Farahat S., Yazdanpanahi J.: Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept. Renew. Energ. 68(2014), 356–365.
[38] Hossain S., Chowdhur H., Chowdhury T., Ahamed J.U., Saidur R., Sait S.M., Rosen M.A.: Energy, exergy and sustainability analyses of Bangladesh’s power generation sector. Energ. Rep. 6(2020), 868–878.
[39] Chowdhury H., Chowdhury T., Chowdhury P., Islam M., Saidur R., Sait S.M.: Integrating sustainability analysis with sectoral exergy analysis: A case study of rural residential sector of Bangladesh, Energ. Buildings 202(2019), 109397.
[40] Cornelissen R.L.: Thermodynamics and sustainable development. PhD thesis, Univ. of Twente, 1997.
[41] Maruf M.H., Rabbani M., Ashique R.H., Islam M.T., Nipun M.K., Haq M.A.U., Al Mansur, Shihavuddin A.S.M.: Exergy based evaluation of power plants for sustainability and economic performance identification. Case Stud. Therm. Eng. 28(2021), 101393.
[42] Rosen M.A., Dincer I., Kanoglu M.: Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 36(2008), 128–137.
[43] Zisopoulos F.K., Rossier-Miranda F.J., van der Goot A.J., Boom R.M.: The use of exergetic indicators in the food industry – A review. Crit. Rev. Food Sci. Nutrit. 57(2017), 197–211.
[44] Hepbasli A.: A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew. Sust. Energ. Rev. 12(2008), 593–661.
[45] Sudhakar K., Tulika Srivastava: Energy and exergy analysis of 36 W solar photovoltaic module. Int. J. Amb. Energ. 35(2014), 1, 51–57.
[46] Press W.H.: Theoretical maximum for energy from direct and diffuse sunlight. Nature 264(1976), 734–735.
[47] Landsberg P.T., Tonge G.: Thermodynamics of the conversion of diluted radiation. J. Phys. A-Math. Gen. 12(1979), 4, 551–562.
[48] Parrott J.E.: Theoretical upper limit to the conversion efficiency of solar energy. Sol. Energy 21(1978), 3, 227–229.
[49] Parrott J.E.: A letter. Sol. Energy 22(1979), 6, 572–573.
[50] Kabelac S.: A new look at the maximum conversion efficiency of blackbody radiation. Sol. Energy 46(1991), 4, 231–236.
[51] Millan M.I., Hernandez F., Martin E.: Available solar exergy in an absorption cooling process. Sol. Energy 56(1996), 6, 505–511.
[52] Würfel P.: Thermodynamic limitations to solar energy conversion. Physica E 14(2002), 1–2, 18–26.
[53] Bejan A.: Advanced Engineering Thermodynamics. Wiley, New York, 2006.
[54] Petela R.: Exergy of undiluted thermal radiation. Sol. Energy 74(2003), 6, 469–488.
[55] ASHRAE. Handbook of Fundamentals. American Society of Heating, Refrigeration, and Air Conditioning Engineers, New York, 1979.
[56] Solar Position Calculator. (accessed 10 May 2021).
[57] Khorasanizadeh H., Mohammadi K., Mostafaeipour A.: Establishing a diffuse solar radiation model for determining the optimum tilt angle of solar surfaces in Tabass, Iran. Energ. Convers. Manage. 78(2014), 805–814.
[58] Despotovic M., Nedic V., Despotovic D., Cvetanovic S.: Review and statistical analysis of different global solar radiation sunshine models. Renew. Sust. Energ. Rev.52(2015), 1869–1880.






DOI: 10.24425/ather.2022.141980

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China