Mass-Spring System (MSS) 3D simulation of a thin flexible membrane with a new model of the elasticity parameters

Journal title

Archive of Mechanical Engineering




vol. 70


No 2


Tudruj, Sylwester : Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland ; Kurec, Krzysztof : Warsaw University of Technology, Institute of Micromechanics and Photonics, Warsaw, Poland ; Piechna, Janusz : Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland ; Kamieniecki, Konrad : Warsaw University of Technology, Institute of Micromechanics and Photonics, Warsaw, Poland



Mass-Spring Systems (MSS) ; spring coefficient ; physically based modeling ; bubble inflation test

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences, Committee on Machine Building


[1] J. Bender, M. Muller, M.A. Otaduy, M. Teschner, and M. Macklin. A survey on position-based simulation methods in computer graphics. Computer Graphics Forum, 33(6):228–251, 2014. doi: 10.1111/cgf.12346.
[2] X. Provot. Deformation constraints in a mass-spring model to describe rigid cloth behaviour. In: Proceedings of Graphics Interface '95, pages 147–154, Quebec, Canada, 1995. doi: 10.20380/GI1995.17.
[3] T.I. Vassilev, B. Spanlang, and Y. Chrysanthou. Efficient cloth model and collisions detection for dressing virtual people. In: Proceeding of ACM/EG Games Technology, Hong Kong, 2001.
[4] Z. Cao and B. He. Research of fast cloth simulation based on mass- spring model. In: Proceedings of the 2012 National Conference on Information Technology and Computer Science, pages 467–471, 2012. doi: 10.2991/citcs.2012.121.
[5] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson. Physically based deformable models in computer graphics. Computer Graphics Forum, 25(4):809–836, 2006. doi: 10.1111/j.1467-8659.2006.01000.x.
[6] E. Basafa, F. Farahmand, and G. Vossoughi. A non-linear mass-spring model for more realistic and efficient simulation of soft tissues surgery. Studies in Health Technology and Informatics, 132:23–25, 2008.
[7] S. Xu, X. P. Liu, H. Zhang, and L. Hu. An improved realistic mass-spring model for surgery simulation. In: 2010 IEEE International Symposium on Haptic Audio Visual Environments and Games, Phoenix, USA, 2010. doi: 10.1109/HAVE.2010.5623989.
[8] Y. Nimura, J. D. Qu, Y. Hayashi, M. Oda, T. Kitasaka, M. Hashizume, K. Misawa, and K. Mori. Pneumoperitoneum simulation based on mass-spring-damper models for laparoscopic surgical planning. Journal of Medical Imaging, 2(4):044004, 2015. doi: 10.1117/1.JMI.2.4.044004.
[9] H. Dehghani Ashkezari, A. Mirbagheri, S. Behzadipour, and F. Farahmand. A mass-spring-damper model for real time simulation of the frictional grasping interactions between surgical tools and large organs. Scientia Iranica, 22(5):1833–1841, 2015.
[10] B. Dong, J. Li, G. Yang, X. Cheng, and Q. Gang. A multi-component conical spring model of soft tissue in virtual surgery. IEEE Access, 8:146093–146104, 2020. doi: 10.1109/ACCESS.2020.3014730.
[11] X. Zhang, J. Duan, W. Sun, T. Xu, and S.K. Jha. A three-stage cutting simulation system based on mass-spring model. Computer Modeling in Engineering & Sciences, 127(1):117–133, 2021. doi: 10.32604/cmes.2021.012034.
[12] S. Tudruj and J. Piechna. Numerical analysis of the possibility of using an external air bag to protect a small urban vehicle during a collision. Archive of Mechanical Engineering, 59(3): 257–281, 2012. doi: 10.2478/v10180-012-0013-2.
[13] J. Piechna, T. Janson, P. Sadowski, S. Tudruj, A. Piechna, and L. Rudniak. Numerical study of aerodynamic characteristics of sports car with movable flaps and deformable airbags. In: Proceedings of Automotive Simulation World Congress, Frankfurt, Germany, 2013.
[14] A. Van Gelder. Approximate simulation of elastic membranes by triangulated spring meshes. Journal of Graphics Tools, 3(2):21–41, 1998. doi: 10.1080/10867651.1998.10487490.
[15] P. E. Hammer, M.S. Sacks, P.J. del Nido, and R.D. Howe. Mass-spring model for simulation of heart valve tissue mechanical behavior. Annals of Biomedical Engineering, 39(6):1668–679, 2011. doi: 10.1007/s10439-011-0278-5.
[16] J. Louchet, X. Provo, and D. Crochemore. Evolutionary identification of cloth animation models. In: D. Terzopoulos, D. Thalmann, (eds) Computer Animation and Simulation'95, pages 44–54, Springer, 1995. doi: 10.1007/978-3-7091-9435-5_4.
[17] K. Golec. Hybrid 3D Mass Spring System for Soft Tissue. Modeling and Simulation. Ph.D. Thesis, Université de Lyon, France, 2018.
[18] V. Baudet, M. Beuve, F. Jaillet, B. Shariat, and F. Zara. Integrating tensile parameters. In WSCG’2009, 2009, hal-00994456.
[19] B.A. Lloyd, G. Székely, and M. Harders. Identification of spring parameters for deformable object simulation. IEEE Transactions on Visualization and Computer, 13(5):1081–1094, 2007. doi: 10.1109/TVCG.2007.1055.
[20] S. Natsupakpong and M.C. Çavusoglu. Determination of elasticity parameters in lumped element (mass-spring) models of deformable objects. Graphical Models, 72(6): 61–73, 2010. doi: 10.1016/j.gmod.2010.10.001.
[21] W.P. Jackson. Characterization of Soft Polymers and Gels using the Pressure-Bulge Technique. Ph.D. Thesis, California Institute of Technology, Pasadena, USA, 2008.
[22] L. Wanigasooriya. Mechanical Characterisation and Ram Extrusion of Wheat Flour Dough. Ph.D. Thesis, Imperial College London, UK, 2006.
[23] P. Jaszak. Modelling of the rubber in Finite Element Method. Elastomery, 20(3):31–39, 2016. (in Polish).
[24] R. Jakel. Analysis of hyperelastic materials with MECHANICA. Presentation for 2nd SAXSIM Technische Universität Chemnitz, Germany, 2010.
[25] A. Ali, M. Hosseini, and B.B. Sahari. A review of constitutive models for rubber-like materials. American Journal of Engineering and Applied Sciences, 3(1):232–39, 2010. doi: 10.3844/ajeassp.2010.232.239.
[26] P. Małkowski and Ł. Ostrowski. The methodology for the young modulus derivation for rocks and its value. Procedia Engineering, 191:134–141, 2017. doi: 10.1016/j.proeng.2017.05.164.
[27] Ansys [Online]. Available:
[28] M. Kot, H. Nagahashi, and P. Szymczak. Elastic moduli of simple mass spring models. The Visual Computer, 31:1339–1350, 2015. doi: 10.1007/s00371-014-1015-5.






DOI: 10.24425/ame.2023.144817