Influence of impeller blade rounding and surface roughness on the internal hydraulics and performance of pump as turbine

Journal title

Archive of Mechanical Engineering




vol. 70


No 2


Gaji, Rahul : Annasaheb Dange College of Engineering and Technology, Ashta, India ; Gaji, Rahul : Sardar Vallabhbhai National Institute of Technology, Surat, India ; Doshi, Ashish : Sardar Vallabhbhai National Institute of Technology, Surat, India ; Bade, Mukund : Sardar Vallabhbhai National Institute of Technology, Surat, India ; Singh, Punit : Centre for Sustainable Technologies, Indian Institute of Science, Bangalore, India



pump as turbine ; impeller blade rounding ; CFD analysis of PAT ; simple modifications in PAT ; hydraulic analysis

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences, Committee on Machine Building


[1] P. P. Sharma, S. Chatterji, and B. Singh. Techno-economic analysis and modelling of standalone versus grid-connected small hydropower systems–a review of literature. International Journal of Sustainable Energy, 32(1):1–17, 2013. doi: 10.1080/14786451.2011.591492.
[2] S. Mishra, S.K. Singal and, D.K. Khatod. Cost analysis for electromechanical equipment in small hydropower projects. International Journal of Green Energy, 10(8):835–847, 2013. doi: 10.1080/15435075.2012.727367.
[3] M. Binama, W.T. Su, X.B. Li, F.C. Li, X.Z. Wei, and S. An. Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 79:148–179, 2017. doi: 10.1016/j.rser.2017.04.071.
[4] M.H. Shojaeefard and S. Saremian. Effects of impeller geometry modification on performance of pump as turbine in the urban water distribution network. Energy, 255:124550, 2022. doi: 10.1016/
[5] P. Singh. Optimization of internal hydraulics and of system design for pumps as turbines with field implementation and evaluation. Ph.D. Thesis, Karlsruhe University, Germany, 2005.
[6] A. Doshi, S. Channiwala, and P. Singh. Inlet impeller rounding in pumps as turbines: An experimental study to investigate the relative effects of blade and shroud rounding. Experimental Thermal and Fluid Science, 82:333–348, 2017. doi: 10.1016/j.expthermflusci.2016.11.024.
[7] M.A. Ismail and H. Zen. CFD modelling of a pump as turbine (PAT) with rounded leading edge impellers for micro hydro systems. Proc. MATEC Web of Conferences, 87:05004, 2017. doi: 10.1051/matecconf/20178705004.
[8] M. Suarda, N. Suarnadwipa, and W.B. Adnyana. Experimental work on modification of impeller tips of a centrifugal pump as a turbine. Proc. The 2nd Joint International Conference on Sustainable Energy and Environment (SEE 2006), pages 21-25, Bangkok, Thailand, 2006.
[9] H. Yang, L. Zhu, H. Xue, J. Duan, and F. Deng. A numerical analysis of the effect of impeller rounding on centrifugal pump as turbine. Processes, 9(9):1673, 2021. doi: 10.3390/pr9091673.
[10] A. Doshi, S. Channiwala, and P. Singh. Influence of nonflow zone (back cavity) geometry on the performance of pumps as turbines. Journal of Fluids Engineering, 140(12):121107, 2018. doi: 10.1115/1.4040300.
[11] S.-S. Yang, F.Y. Kong, J.-H. Fu, and L. Xue. Numerical research on effects of splitter blades to the influence of pump as turbine. International Journal of Rotating Machinery, 2012:123093. doi: 0.1155/2012/123093.
[12] A. Doshi. I nfluence of impeller inlet rounding and shape of non-flow zones on the performance of pump as turbine. Ph.D. Thesis, Sardar Vallabhbhai National Institute of Technology, Surat, India, 2016.
[13] S. Derakhshan and N Kasaeian. Optimization, numerical, and experimental study of a propeller pump as turbine. Journal of Energy Resources Technology, 136(1):012005, 2014. doi: 10.1115/1.4026312.
[14] S-.S. Yang, H.-L. Liu, F.-Y. Kong, B. Xia, and L.-W. Tan. Effects of the radial gap between impeller tips and volute tongue influencing the performance and pressure pulsations of pump as turbine. Journal of Fluids Engineering, 136(5):054501, 2014. doi: 10.1115/1.4026544.
[15] S.-C. Miao, J.-H. Yang, G.-T. Shi, and T.-T. Wang. Blade profile optimization of pump as turbine. Advances in Mechanical Engineering, 7(9), 2015. doi: 10.1177/1687814015605748.
[16] T. Lin, Z. Zhu, X. Li, J. Li, and Y. Lin. Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine. Renewable Energy, 168:31–44, 2021. doi: 10.1016/j.renene.2020.12.040.
[17] D.L. Zariatin, D. Rahmalina, E. Prasetyo, A. Suwandi, and M. Sumardi. The effect of surface roughness of the impeller to the performance of pump as turbine pico power plant. Journal of Mechanical Engineering and Sciences, 13(1):4693–4703, 2019. doi: 10.15282/jmes.13.1.2019.24.0394.
[18] L. Zemanová and P. Rudolf. Flow inside the sidewall gaps of hydraulic machines: a review. Energies, 13(24):6617, 2020. doi: 10.3390/en13246617.
[19] S. Sangal, M.K. Singhal, and R.P. Saini. Hydro-abrasive erosion in hydro turbines: a review. International Journal of Green Energy, 15(4):232–253, 2018. doi: 10.1080/15435075.2018.1431546.
[20] J.F. Santa, J.C. Baena, and A. Toro. Slurry erosion of thermal spray coatings and stainless steels for hydraulic machinery. Wear, 263(1-6):258–264, 2007. doi: 10.1016/j.wear.2006.12.061.
[21] M. Singh, J. Banerjee, P.L. Patel, and H. Tiwari. Effect of silt erosion on Francis turbine: a case study of Maneri Bhali Stage-II, Uttarakhand, India. ISH Journal of Hydraulic Engineering, 19(1):1–10, 2013. doi: 10.1080/09715010.2012.738507.
[22] M. Sharma, D.K. Goyal, and G Kaushal. Tribological investigation of HVOF sprayed coated turbine steel under varied operating conditions. Materials Today: Proceedings, 24(2):869–879, 2020. doi: 10.1016/j.matpr.2020.04.397.
[23] T. Asim and R. Mishra. Large-Eddy-Simulation-based analysis of complex flow structures within the volute of a vaneless centrifugal pump. Sādhanā, 42(4):505–516, 2017. doi: 10.1007/s12046-017-0623-y.
[24] R. Gupta and A. Biswas. CFD analysis of flow physics and aerodynamic performance of a combined three-bucket Savonius and three-bladed Darrieus turbine. International Journal of Green Energy, 8(2):209–233, 2011. doi: 10.1080/15435075.2010.548541.
[25] K. Rogowski, R. Maroński, and J. Piechna. Numerical analysis of a small-size vertical-axis wind turbine performance and averaged flow parameters around the rotor. Archive of Mechanical Engineering, 64(2):205–218, 2017. doi: 0.1515/meceng-2017-0013.
[26] J. Gülich. Centrifugal Pump. Springer, Berlin, 2008.
[27] G. Varghese, T.M. Kumar, and Y.V.N. Rao. Influence of volute surface roughness on the performance of a centrifugal pump. Journal of Fluids Engineering, 100(4):473–476, 1978. doi: 10.1115/1.3448710.
[28] F.A. Varley. Effects of impeller design and surface roughness on the performance of centrifugal pumps. Proceedings of the Institution of Mechanical Engineers, 175(1):955–989, 1961. doi: 10.1243/PIME_PROC_1961_175_062_02.
[29] J.F. Gülich. Disk friction losses of closed turbomachine impellers. Forschung im Ingenieurwesen, 68(2):87–95, 2003. doi: 10.1007/s10010-003-0111-x.






DOI: 10.24425/ame.2023.145581