Co-combustion of wood pellet and waste in residential heating boilers - comparison of carbonaceous compound emission

Journal title

Archives of Environmental Protection




vol. 49


No 3


Klyta, Justyna : Institute of Environmental Engineering PAS, Poland ; Janoszka, Katarzyna : Institute of Environmental Engineering PAS, Poland ; Czaplicka, Marianna : Institute of Environmental Engineering PAS, Poland ; Rachwał, Tomasz : Institute of Environmental Engineering PAS, Poland ; Jaworek, Katarzyna : Institute of Environmental Engineering PAS, Poland



polycyclic aromatic hydrocarbons ; co-combustion ; levoglucosan ; phthalates ; household heating ; biomass with waste

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences


  1. Chen, L., Zhao, Y., Li, L., Chen, B. & Zhang, Y. (2012), Exposure assessment of phthalates in non-occupational populations in China, Science of the Total Environment, 427-428, pp. 60-69. DOI:10.1016/j.scitotenv.2012.03.090
  2. Chen, Q., Zhang, X., Bradford, D., Sharifi, V. & Swithenbank, J. (2010). Comparison of emission characteristics of small-scale heating systems using biomass instead of coal, Energy Fuels, 24, 8, pp. 4255-4265. DOI:10.1021/ef100491v
  3. Cincinelli, A., Guerranti, C., Martellini, T. & Scodellini, R. (2019). Residential wood combustion and its impact on urban air quality in Europe, Current Opinion In Environmental Science & Health, 8, pp. 10-14. DOI:10.1016/j.coesh.2018.12.007
  4. Czaplicka, M., Cieślik, E., Komosiński, B. & Rachwał, T. (2019). Emission factors for biofuels and coal combustion in a domestic boiler 18kW, Atmosphere, 10, 12. DOI:10.3390/atmos10120771
  5. Czaplicka, M., Klyta, J., Komosiński, B., Konieczny, T. & Janoszka, K. (2021), Comparison of carbonaceous compounds emission from the co-combustion of coal and waste in boilers used in residential heating in Poland, Central Europe, Energies, 14, 5326, pp. 1-15. DOI:10.3390/en14175326
  6. Czaplicka, M., Węglarz, A., Klejnowski, K. (2001), Analysis of organic contaminants from motor vehicles adsorbed on the particulate matter for PAHs, Chemia Analityczna, 46, pp. 677-689
  7. Demibras, A. (2004). Combustion characteristics of different biomass fuels, Progress in Energy and Combustion Science, 30, pp. 219-230. DOI:10.1016/j.pecs.2003.10.004
  8. Dhahak, A., Grimmer, Ch., Neumann, A., Rüger, Ch., Sklorz, M., Streibel, Th., Zimmermann, R., Mauviel, G. & Burkle-Vitzhum, V. (2020). Real-time monitoring of slow pyrolysis of polyethylene terephthalate (PET) by different mass spectrometric techniques, Waste Management, 106, pp. 226-239. DOI:10.1016/j.wasman.2020.03.028
  9. Hardy, T., Musialik-Piotrowska. A., Ciołek, J., Mościcki, K. & Kordylewski, W. (2012). Negative Effects of Biomass Combustion and Co-combustion in boilers, Environment Protection Engineering, 38, 1, pp. 25-33
  10. Ishaq, M., Ahmad, I., Shakirullah, M., Arsala Khan, M., ur Rehman, H. & Bahadur, A. (2006), Pyrolysis of some whole plastics and plastics-coal mixtures, Energy Conversion and Management, 47, 18-19, pp. 3216-3223. DOI: 10.1016/j.enconman.2006.02.019
  11. Janoszka, K., Czaplicka M. & Klejnowski, K. (2020), Comparison of biomass burning tracers concentration between two winter seasons in Krynica Zdrój, Air Quality, Atmopshere& Health, 13, pp. 379-385. DOI:10.1007/s11869-020-00801-1
  12. Jaworek, K. & Czaplicka, M. (2013), Determination of phthalates in polymer materials – Comparison of GC/MS and GC/ECD methods, Polímeros, 23, pp. 718-724. DOI:10.4322/polimeros.2014.014
  13. Kistler, M., Schmidl, Ch., Padouvas, E., Giebl, H., Lohninger, J., Ellinger, R., Bauer, H. & Puxbaum, H. (2012). Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to central Europe, Atmospheric environment, 51, pp. 86-93. DOI:10.1016/j.atmosenv.2012.01.044
  14. Kojić, I., Bechtel, A., Aleksić, N., Životić, D., Trifunović, S., Gajica, G. & Stojanović, K. (2021), Study of the synergetic effect of co-pyrolysis of lignite and high-density polyethylene aiming to improve utilization of low-rank coal, Polymers, 13, 5, pp. 1-25. DOI:10.3390/polym13050759
  15. Krugly, E., Martuzevicius, D., Puida, E., Buinevicius, K., Stasiulaitiene, I., Radziuniene, I., Minikauskas, A. & Klucininkas, L. (2014), Characterization of gaseous- and particulate-phase emissions from the combustion of biomass-residue-derived fuels in a small residential boiler, Energy Fuels, 28, pp. 5057-5066. DOI:10.1021/ef500420t
  16. Li, D. H., Oh, J. R. & Park, J. (2003), Direct extraction of alkylphenols, chlorophenols and bisphenol A from acid-digested sediment suspension for simultaneous gas chromatographic-mass spectrometric analysis, Journal of Chromatography A, 1012, pp. 207-214. DOI:10.1016/S0021-9673(03)01174-9
  17. Li, Zh., Guo, S., Li, Zh., Wang, Y., Hu, Y., Xing, Y., Liu, G., Fang, R. & Zhu, H. (2020), PM2,5 Associated phenols, phthalates and water-soluble ions from five stationary combustion sources, Aerosol and Air Quality Research, 20, pp. 61-71. DOI:10.4209/aaqr.2019.11.0602
  18. Lim, M. T., Phan, A., Roddy, D. & Harvey, A. (2015). Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review, Renewable and Sustainable Energy Reviews, 49, pp. 574-584. DOI:10.1016/j.rser.2015.04.090
  19. Musialik-Piotrowska, A., Kordylewski, W., Ciołek J. & Mościcki, K. (2010). Characteristics of air pollutants emitted from biomass combustion in small retort boiler, Environment Protection Engineering, 36, 2, pp. 123-131.
  20. Oh, S.-Y. & Seo, T.-C. (2019) Upgrading biochar via co-pyrolisation of agricultural biomass and polyethylene terephthalate wastes, RCS Advances, 9, pp. 28284-28290. DOI:10.1039/C9RA05518E
  21. Pan, Ch.-X., Wei, X.-Y., Shui, H.-F., Wang, Zh.-C., Gao, J., Wei, Ch., Cao, X.-Zh. & Zong, Zh.-M. (2013), Investigation on the macromolecular network structure of Xianfeng lignite by a new two-step depolymerization, Fuel, 109, pp. 49-53. DOI:10.1016/j.fuel.2012.11.059
  22. Růžičková, J., Kucbel, M., Raclavská, H., Švédová, B., Raclavský, K. & Juchelková, D. (2019). Comparison of organic compounds in char and soot from the combustion of biomass in boilers of various emission classes. Journal of Environment Management, 15, pp. 769-783. DOI:10.1016/j.jenvman.2019.02.038
  23. Růžičková, J., Raclavská, H., Raclavský, K. & Juchelková, D. (2016), Phthalates in PM2,5 airborne particles in the Moravian-Silesian Region, Czech Republic, Perspectives in Science, 7, pp. 178-183. DOI:10.1016/j.pisc.2015.11.029
  24. Salapasidou, M., Samara, C. & Voutsa, D. (2011), Endocrine disrupting compounds in the atmosphere of the urban area of Thessaloniki, Greece, Atmospheric Environment, 45, 22, pp. 3720-3729. DOI:0.1016/j.atmosenv.2011.04.025
  25. Song, B. & Hall, P. (2020). Densification of biomass and waste plastic blends as a solid fuel: hazards, advantages, and perspectives, Frontiers in Energy Research, 8, 58, pp. 1-7. DOI:10.3389/fenrg.2020.00058
  26. Sun, J., Shi, G., Jin, W., Chen, Y., Shen, G., Tian, Ch., Zhang, Y., Zong, Zh., Cheng, M., Zhang, X., Zhang, Y., Liu, Ch., Lu, J., Wang, H., Xiang, J., Tong, L. & Zhang, X. (2018). Emissions factors of organic carbon and elemental carbon for residential coal and biomass fuels in China – A new database for 39 fuel-stove combinations, Atmospheric Environment, 190, pp. 241-248. DOI:10.1016/j.atmosenv.2018.07.032
  27. Sun, L., Wang, F., Xie, Y., Feng, J. & Wang, Q. (2012), The combustion performance of medium density fiberboard treated with fire retardant microspheres, Bioresources, 7, pp. 593-601.
  28. Szyszlak-Bargłowicz, J., Zając, G. & Słowik, T. (2015). Hydrocarbon emissions during biomass combustion, Polish Journal of Environmental Studies, 24, pp. 1349-1354. DOI:10.15244/pjoes/37550
  29. Tomsej, T., Horak, J., Tomsejowa, S., Krpec, K., Klanova, J., Dej, M. & Hopan, F. (2018) The impact of co-combustion of polyethylene plastics and wood in the small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1,3,5-triphenylbenzene, Chemosphere, 196, pp. 18-24. DOI:10.1016/j.chemosphere.2017.12.127
  30. Uğuz, C., Işcan, M. & Togan, I. (2009), Alkylphenols in the environment and their adverse effects on living organisms, Kocatepe Veterinary Journal, 2, 1, pp. 49-58.
  31. Wang, S., Wang, W. & Yang, H. (2018), Comparison of product carbon footprint protocols: Case study on medium-density fiberboard in China, International Journal of Environmental Research and Public Health, 15, 10, pp. 1-14. DOI:10.3390/ijerph15102060
  32. Wasilewski, R. & Siudyga, T. (2013), Odzysk energetyczny odpadowych tworzyw sztucznych, Chemik, 67, 5, pp. 435-445.
  33. Williams. A., Jones. J. M., Ma. L & Pourkashanian, M. (2012). Pollutants from the combustion of solid biomass fuels, Progress in Energy and Combustion Science, 38, pp. 113-137. DOI:10.1016/j.pecs.2011.10.001
  34. Zeng, Q., Lu, Q., Zhou, Y., Chen, N., Rao, J. & Fan, M. (2018), Circular development of recycled natural fibers from medium density fiberboard wastes, Journal of Cleaner Production, 8, pp. 1-17. DOI:10.1016/j.jclepro.2018.08.166
  35. Zubkova, V. & Czaplicka, M. (2012), Changes in the structure of plasticized coals caused by extraction with dichloromethane, Fuel, 96, pp. 298-305. DOI:10.1016/j.fuel.2011.12.067
  36. Zubkova, V., Czaplicka, M. & Puchala, A. (2016), The influence addition of coal tar pitch (CTP) and expired pharmaceuticals (EP) on properties and composition of pyrolysis products for lower and higher rank coal, Fuel, 170, pp. 197-209. DOI:10.1016/j.fuel.2011.12.067






DOI: 10.24425/aep.2023.147332



Abstracting & Indexing

Abstracting & Indexing

Archives of Environmental Protection is covered by the following services:

AGRICOLA (National Agricultural Library)




BIOSIS Citation Index





Engineering Village


Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs






Ulrich's Periodicals Directory


Web of Science