Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the authors present a novel construction of an automatic balancing device applicable to balancing shafts working in a heavily polluted environment. The novelty of the presented system lies in the fact that its utilization requires no changes to be made in the already existing shafts. Also, the system is capable of working during the operation of the balanced shaft, so there is no need to stop it. The propulsion system is based on eddy current braking, therefore no wires need to be used in the device. During the development process of the system, three iterations of the device were created. Each iteration is presented, described, and discussed. The advantages and drawbacks of each version are pointed out and explained thoroughly. The correctness of the design was verified by the created devices that were assembled and fixed on shafts to prove the design assumptions.
Go to article

Bibliography

[1] J. Alsalaet. Dynamic Balancing and Shaft Alignment. College of Engineering – University of Basrah, Iraq, 2015.
[2] G.K. Grim, J.W. Haidler, and B.J. Mitchell. The Basics of Balancing. Balance Technology Inc., 2014.
[3] M. MacCamhaoil. Static and Dynamic Balancing of Rigid Rotors. Brüel & Kjær, 2016.
[4] R. Kelm, D. Pavelek, and W. Kelm. Rotor balancing tutorial. In: 45th Turbomachinery Symposium, pages 1–29, Huston, Texas, USA, Sept.12–15, 2016. doi: 10.21423/R1G59R.
[5] W.C. Foiles and P.E. Allaire. Single plane and multi-plane rotor balancing using only amplitude. In: 7th IFToMM International Conference on Rotor Dynamics, Vienna, Austria, Sept. 25–28, 2006.
[6] L. Li, S. Cao, J. Li, R. Nie, and L. Hou. Review of rotor balancing methods. Machines, 9(5):89, 2021. doi: 10.3390/machines9050089.
[7] Bendix Aviation Corp. Automatic Balancing of Rotating Bodies. Patent GB570170A, 1945.
[8] P. Żak. A survey of automatic balancing methods for shafts in motion. International Journal of Mechanical Engineering and Robotics Research, 9(4):559–564. doi: 10.18178/ijmerr.9.4.559-564.
[9] P. Loetzner, C.P. Hemingray, and C. Maas. Rotatable shaft balancing machine and method with automatic flexible shaft balancing equipment. Patent US20030024309A1, 2003.
[10] L. Capo and I. Goodbar. Device for the automatic static and dynamic balancing of rotating machinery. Patent GB679522A, 1952.
[11] G. Darrieus. Apparatus for automatic balancing of rotating bodies. Patent US2659243A, 1953.
[12] G. Darrieus. Device for automatic balancing of rotating machine parts. Patent US2778243A, 1957.
[13] J. Perdiart. System for automatically balancing a centrifuge in operation. Patent US4919646, 1990.
[14] O.A. Makarov, V.I. Nisenman, V.I. Pryadilov, and J.P. Tsimansky. Device for automatic balancing of grinding wheel. Patent US4905419, 1990.
[15] H. Wu, X. Pan, and H. Gao. Pneumatic liquid on-line automatic balancer of rotor. Patent US20140311281A1, 2014.
[16] P.C. Stein. Permanent automatic rotor balancer for shafts operating above critical speed. Patent US4117742A, 1978.
[17] W.R. Backer. Automatic balancing means. Patent GB957577A, 1962.
[18] K. Unno and K. Sugita. Automatic balancing apparatus for a rotating body. US3776065A, 1973.
[19] H. Kuwajima, H. Kita, H. Hashi, M. Miyamoto, Y. Ueno, T. Inagaki, and K. Matsuoka. Development of balanced-type high shock suspension for 0.85-in hard disk drive. IEEE Transactions on Magnetics, 42(2):255–260, 2006. doi: 10.1109/TMAG.2005.861736.
[20] Gao Jinji and Zhang Peng. Simulative study of automatic balancing of grinding wheel using a continuously-dripping liquid-injection balancing head. In: 2006 6th World Congress on Intelligent Control and Automation, pages 8002-8005, Dalian, China, 2006. doi: 10.1109/WCICA.2006.1713530.
[21] E. Lulay. Apparatus for balancing a rotary member. Patent US5676025A, 1997.
[22] M. Krygier, P. Żak, L. Podsędkowski, P. Wróblewski, and M. Podsędkowski. A novel autonomous balancing system for shafts in motion. 2022 20th International Conference on Mechatronics – Mechatronika (ME), pages 1-4, Pilsen, Czech Republic, 2022, doi: 10.1109/ME54704.2022.9983460.
[23] M. Krygier, P. Żak, and L. Podsedkowski. Numerical analysis of torques generated in a propulsion system using eddy currents phenomenon. 5th International Conference on Robotics Systems and Automation Engineering (RSAE) (RSAE 2023), April 20–22, 2023, online.
Go to article

Authors and Affiliations

Michał Krygier
ORCID: ORCID
Paweł Żak
1
ORCID: ORCID
Leszek Podsędkowski
1
ORCID: ORCID
Piotr Wróblewski
1
ORCID: ORCID
Maciej Podsędkowski
2
ORCID: ORCID

  1. Institute of Machine Tools and Production Engineering, Lodz University of Technology, Lodz, Poland
  2. Institute of Turbomachinery, Lodz University of Technology, Lodz, Poland

This page uses 'cookies'. Learn more