Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Noise control is essential in an enclosed machine room where the noise level has to comply with the occupational safety and health act. In order to overcome a pure tone noise with a high peak value that is harmful to human hearing, a traditional reactive muffler has been used. However, the traditional method for designing a reactive muffler has proven to be time-consuming and insufficient. In order to efficiently reduce the peak noise level, interest in shape optimization of a Helmholtz muffler is coming to the forefront.

Helmholtz mufflers that deal with a pure tone have been adequately researched. However, the shape optimization of multi-chamber Helmholtz mufflers that deal with a broadband noise hybridized with multiple tones within a constrained space has been mostly ignored. Therefore, this study analyzes the sound transmission loss (STL) and the best optimized design for a hybrid Helmholtz muffler under a space- constrained situation. On the basis of the plane wave theory, the four-pole system matrix used to evaluate the acoustic performance of a multi-tone hybrid Helmholtz muffler is presented. Two numerical cases for eliminating one/two tone noises emitted from a machine room using six kinds of mufflers (muffler A~F) is also introduced. To find the best acoustical performance of a space-constrained muffler, a numerical assessment using a simulated annealing (SA) method is adopted. Before the SA operation can be carried out, the accuracy of the mathematical model has been checked using the experimental data. Eliminating a broadband noise hybridized with a pure tone (130 Hz) in Case I reveals that muffler C composed of a one- chamber Helmholtz Resonator and a one-chamber dissipative element has a noise reduction of 54.9 (dB). Moreover, as indicated in Case II, muffler F, a two-chamber Helmholtz Resonator and a one-chamber dissipative element, has a noise reduction of 69.7 (dB). Obviously, the peak values of the pure tones in Case I and Case II are efficiently reduced after the muffler is added.

Consequently, a successful approach in eliminating a broadband noise hybridized with multiple tones using optimally shaped hybrid Helmholtz mufflers and a simulated annealing method within a constrained space is demonstrated.

Go to article

Authors and Affiliations

Min-Chie Chiu
Download PDF Download RIS Download Bibtex

Abstract

This article presents a way of analyzing the transfer function of electronic signal amplifiers. It also describes the possibility of using signal precorrection which improves the parasitic harmonics in the THD (Total Harmonic Distortion) of the amplified signal by correcting linearity of the tested amplifier’s transfer function. The proposed method of analyzing and presenting the transfer function allows to diagnose the causes of generating parasitic harmonics, what makes it a useful tool when designing low distortion amplifier systems, such as e.g. amplifiers in measurement systems. The presented THD correction can be used in e.g. amplifier systems that cooperate with arbitrary generators.

Go to article

Authors and Affiliations

Janusz Mroczka
Jarosław Zygarlicki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents modification of the method dedicated to a complex area decomposition of a set of logic functions whereas the

altered method is dedicated to implement the considered logic circuits within FPGA structures. The authors attempted to reach solutions where the number of configurable logic blocks and the number of structural layer would be reasonably balanced on the basis of the minimization principle. The main advantage of the procedure when the decomposition is carried out directly on the BDD diagram is the opportunity of immediate checking whether the decomposed areas of the diagram do not exceed the resources of logic blocks incorporated into the integrated circuits that are used for implementation of the logic functions involved.

Go to article

Authors and Affiliations

A. Dzikowski
E. Hrynkiewicz

This page uses 'cookies'. Learn more