Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In order to study the sensitivity of multiple karst cave factors on surface settlement during Tunnel Boring Machine(referred to TBM hereinafter) tunnelling, a three-dimensional numerical model is built by taking a subway project as an example and combining MIDAS GTS NX finite element software. Secondly, the influence of the radius, height, angle, vertical net distance, and horizontal distance of the karst cave on the maximum surface settlement is studied and sorted under the two working conditions of treatment and untreated using the grey correlation analysis method. Additionally, a multi-factor numerical model of the untreated karst cave is established. Finally, based on the preceding research, a multi-factor prediction model for the maximum surface settlement is proposed and tested. The results reveal that when the karst cave is not treated, the radius and height of the karst cave have a significant effect on the maximum surface settlement. After the cave treatment, the influence of the cave parameters on the maximum settlement of the surface is greatly reduced. The calculating modelcreated in this study offers excellent prediction accuracy and good adaptability.
Go to article

Authors and Affiliations

Bichang Dong
Tao Yang
ORCID: ORCID
Binbin JU
Zhongying QU
Chao Yi
Download PDF Download RIS Download Bibtex

Abstract

The traditional industrial robots come with the prime mover, i.e. Electric Motors (EM) which ranges from a few hundred too few kilo watts of power ratings. However, for autonomous robotic navigation systems, we require motors which are light weighted with the aspect of high torque and power density. This aspect is very critical, when the EMs in robotic navigations are subjected to harsh high temperature survival conditions, where the sustainability of the performance metrics of the electromagnetic system of the EMs degrade with the prevailing high temperature conditions. Hence, this research work address and formulate the design methodology to develop a 630 W High Temperature PMSM (HTPMSM) in the aspect of high torque and power density, which can be used for the autonomous robotic navigation systems under high temperature survival conditions of 200°C. Two types of rotor configurations i.e. the Surface Permanent Magnet type (SPM) and the Interior Permanent Magnet type (IPM) of HTPMSM are examined for its optimal electromagnetic metrics under the temperature conditions of 200°C. The 630 W HTPMSM is designed to deliver the rated torque of 2 Nm within the volumetric & diametric constraints of D x L which comes at 80 x 70 mm at the rated speed of 3000 rpm with the survival temperature of 200°C with the target efficiency of greater than 90%. The FEM based results are validated through the hardware prototypes for both SPM and IPM types, and the results confirm the effectiveness of the proposed design methodology of HTPMSM for sustainable autonomous robotic navigation applications.
Go to article

Authors and Affiliations

M Anand
M Sundaram
P Sivakumar
A Angamuthu
Download PDF Download RIS Download Bibtex

Abstract

Motion planning for autonomous vehicles relies heavily on perception and prediction results to find a safe, collision-free local trajectory that adheres to traffic rules. However, vehicle perception is frequently limited by occlusion, and the generation of safe local trajectories with restricted perception is a significant challenge in the field of motion planning. This paper introduces a collision avoidance trajectory planning algorithm that considers potential collision risks, within a hierarchical framework of sampling and optimization. The primary objective of this work is to generate trajectories that are safer and align better with human driver behavior while considering potential collision risks in occluded regions. Specifically, in occlusion scenarios, the state space is discretized, and a dynamic programming algorithm is used for a sampling-based search to obtain initial trajectories. Additionally, the concept of a driving risk field is introduced to describe potential collision risk elements within the human-vehicle-road environment. By drawing inspiration from graph search algorithms, potential collision risk areas are accurately described, and a cost function is proposed for evaluating potential risks in occluded regions. Drivers typically exhibit conservative and cautious driving behavior when navigating through occluded regions. The proposed algorithm not only prioritizes driving safety but also considers driving efficiency, thereby reducing the vehicle's conservativeness when passing through occlusions. The research results demonstrate that the ego vehicle can actively avoidblind spots and tends to move away from occluded regions, aligning more closely with human driver behavior.
Go to article

Authors and Affiliations

Yubin Qian
ORCID: ORCID
Chengzhi Deng
Jiejie Xu
Xianguo Qu
Zhenyu Song

This page uses 'cookies'. Learn more