Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 229
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the noise levels present at various points in the FOSREM type fiber optic seismograph. The main aim of this research was to discover magnitudes of noise, introduced by various components of the analog and optical circuits of the device. First, the noise present in the electronic circuit without any optics connected is measured. Further experiments show noise levels including the detector diode not illuminated and illuminated. Additional tests were carried out to prove the necessity of analog circuitry shielding. All measurements were repeated using three powering scenarios which investigated the influence of power supply selection on noise. The results show that the electronic components provide a sufficient margin for the use of an even more precise detector diode. The total noise density of the whole device is lower than 4⋅10−7 rad/(s√Hz). The use of a dedicated Insulating Power Converter as a power supply shows possible advantages, but further experiments should be conducted to provide explicit thermic confirmation of these gains.
Go to article

Bibliography

  1. Rajan, G. Optical Fiber Sensors: Advanced Techniques and Applications. (CRC press, 2017).
  2. Sabri, N., Aljunid, S. A., Salim, M. S., Ahmad, R. B. & Kamaruddin, R. Toward optical sensors: Review and applications. J. Phys.: Conf. Ser. 423, 012064 (2014). https://doi.org/10.1088/1742-6596/423/1/012064
  3. Lee, B. et al. Interferometric fiber optic sensors. Sensors 12(3), 2467-2486 (2012). https://doi.org/10.3390/s120302467
  4. Bao, X. & Chen, L. Recent progress in distributed fiber optic sensors. Sensors 12(7), 8601–8639 (2012). https://doi.org/10.3390/s120708601
  5. Liu, G., Han, M. & Hou, W. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity. Opt. Express 23(6), 7237–7247 (2015). https://doi.org/10.1364/OE.23.007237
  6. Campanella, C. E., Cuccovillo, A., Campanella, C., Yurt, A. & Passaro, V. Fibre Bragg grating based strain sensors: review of technology and applications. Sensors 18(9), 3115 (2018). https://doi.org/10.3390/s18093115
  7. Ramakrishnan, M., Rajan, G., Semenova, Y. & Farrell, G. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 16(1), 99 (2016), https://doi.org/10.3390/s16010099.
  8. Yu, Q. & Zhou, X. (2011) Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sens. 1(1), 72–83 (2011). https://doi.org/10.1007/s13320-010-0017-9
  9. Chang, T. et al. Fiber optic interferometric seismometer with phase feedback control. Opt. Express 28(5), 6102–6122 (2020). https://doi.org/10.1364/OE.385703
  10. Budinski, V. & Donlagic, D. Fiber-optic sensors for measurements of torsion, twist and rotation: a review. Sensors 17(3), 443 (2017). https://doi.org/10.3390/s17030443
  11. Jaroszewicz, L. R., Kurzych, A., Krajewski, Z., Kowalski, J. K., Kowalski, H. A. & Teisseyre, K. P. Innovative Fibre-Optic Rotational Seismograph. in 7th International Symposium on Sensor Science Proceedings 15, 45 (2019). https://doi.org/10.3390/proceedings2019015045
  12. Lee, W. H. K., Celebi, M., Todorovska, M. & Igel, H. Introduction to the special issue on rotational seismology and engineering applications. Bull. Seismol. Soc. Am. 99, 945–957 (2009). https://doi.org/10.1785/0120080344
  13. Kurzych, A., Kowalski, J. K., Sakowicz, B., Krajewski, Z. & Jaroszewicz, L. R. The laboratory investigation of the innovative sensor for torsional effects in engineering structures’ monitoring. Opto-Electron. Rev. 24(3), 134–143 (2016). http://doi.org/10.1515/oere-2016-0017
  14. Kurzych, A., Jaroszewicz, L. R., Kowalski, J. K. & Sakowicz, B. Investigation of rotational motion in a reinforced concrete frame construction by a fiber optic gyroscope. Opto-Electron. Rev. 28(2), 69–73 (2020). https://doi.org/10.24425/opelre.2020.132503
  15. Bernauer, F. et al. Rotation, strain, and translation sensors performance tests with active seismic sources. Sensors 21(1), 264 (2021). https://doi.org/10.3390/s21010264
  16. Sagnac, G. The light ether demonstrated by the effect of the relativewind in ether into a uniform rotation interferometer. Acad. Sci. 95, 708–710 (1913).
  17. Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967). https://doi.org/10.1103/RevModPhys.39.475
  18. Jaroszewicz, L. R., Kurzych, A., Krajewski, Z., Dudek, M., Kowalski, J. K. & Teisseyre, K. P. The fiber-optic rotational seismograph - laboratory tests and field application. Sensors 19(12), 2699 (2019). https://doi.org/10.3390/s19122699
  19. Lefevre, H. C., Martin, P., Morisse, J., Simonpietri, P., Vivenot, P. & Arditti, H. J. High-dynamic-range fiber gyro with all-digital signal processing. Proc. SPIE 1367, 72–80 (1991).
  20. LeFevre, H. C. The Fiber Optic Gyroscope. (2nd ed.) 154–196 (Artech House: Norwood, MA, 2008).
  21. Merlo, S., Norgia, M. & Donati, S. Fiber Gyroscope Principles. in Handbook of Fibre Optic Sensing Technology. (ed. Lopez, J. M.) 1–23 (2000).
  22. Bernauer, F., Wassermann, J. & Igel, H. Rotational sensors—A comparison of different sensor types. J. Seismol. 16, 595–602 (2012). https://doi.org/10.1007/s10950-012-9286-7
  23. Heinzel, G., Rüdiger, A. & Schilling, R. Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows. https://holometer.fnal.gov/GH_FFT.pdf (2021).
  24. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE-SA Standards Board 952, (1997). https://doi.org/10.1109/IEEESTD.1998.86153
  25. Allan Variance: Noise Analysis for Gyroscopes. Application Note AN5087 Rev. 0.2/2015. Freescale Semiconductor Inc., Eindhoven, Niderlands, (2015).
  26. Konno K. & Ohmachi, T. Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88(1), 228-241 (1998).
Go to article

Authors and Affiliations

Sławomir Niespodziany
1
ORCID: ORCID
Anna T. Kurzych
2
ORCID: ORCID
Michał Dudek
2
ORCID: ORCID

  1. Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska St., Warsaw 00-665, Poland
  2. Institute of Technical Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warsaw 00-908, Poland
Download PDF Download RIS Download Bibtex

Abstract

Peak-to-average power ratio reduction techniques for visible light communication broadcasting systems are designed, simulated, and evaluated in this work. The proposed techniques are based on merging non-linear companding techniques with precoding techniques. This work aims to nominate an optimum novel scheme combining the low peak-to-average power ratio with the acceptable bit error rate performance. Asymmetrically clipped optical orthogonal frequency division multiplexing with the low peak-to-average power ratio performance becomes more attractive to real-life visible light communication applications due to non-linearity elimination. The proposed schemes are compared and an optimum choice is nominated. Comparing the presented work and related literature reviews for peak-to-average power ratio reduction techniques are held to ensure the proposed schemes validity and effectiveness.
Go to article

Bibliography

  1. Mohammed, N. A. & Elkarim, M. A. Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC. Opt. Express 23, 20297 (2015). https://doi.org/10.1364/oe.23.020297
  2. Grobe, L. et al. High-speed visible light communication systems. IEEE Commun. Mag. 51, 60–66 (2013). https://doi.org/10.1109/MCOM.2013.6685758
  3. Mohammed, N. A. & Mansi, A. H. Performance enhancement and capacity enlargement for a DWDM-PON system utilizing an optimized cross seeding rayleigh backscattering design. Appl. Sci. 9, 4520 (2019). https://doi.org/10.3390/app9214520
  4. Mohammed, A. N., Okasha, M. N. & Aly, M. H. A wideband apodized FBG dispersion compensator in long haul WDM systems. J. Optoelectron. Adv. Mater. 18, 475–479 (2016).
  5. Mohammed, N. A. & El Serafy, H. O. Ultra-sensitive quasi-distributed temperature sensor based on an apodized fiber Bragg grating. Appl. Opt. 57, 273 (2018). https://doi.org/10.1364/ao.57.000273
  6. Mohammed, N. A. & Okasha, N. M. Single- and dual-band dispersion compensation unit using apodized chirped fiber Bragg grating. J. Comput. Electron. 17, 349–360 (2018). https://doi.org/10.1007/s10825-017-1096-2
  7. Shehata, M. I. & Mohammed, N. A. Design and optimization of novel two inputs optical logic gates (NOT, AND, OR and NOR) based on single commercial TW-SOA operating at 40 Gbit/s. Opt. Quantum Electron. 48, 1–16 (2016). https://doi.org/10.1007/s11082-016-0602-2
  8. Mohammed, N. A., Hamed, M. M., Khalaf, A. A. M., Alsayyari, A. & El-Rabaie, S. High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal. Results Phys. 14, 102478 (2019). https://doi.org/10.1016/j.rinp.2019.102478
  9. Mohammed, N. A., Abo Elnasr, H. S. & Aly, M. Performance evaluation and enhancement of 2×2 Ti: LiNbO 3 Mach Zehnder interferometer switch at 1.3 µm and 1.55 µm. Open Electr. Electron. Eng. J. 6, 36–49 (2012). https://doi:10.2174/1874129001206010036
  10. Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultra-h igh bit rate all-optical AND/OR logic gates based on photonic crystal with multi-wavelength simultaneous operation. J. Mod. Opt. 66, 1005–1016 (2019). https://doi.org/10.1080/09500340.2019.1598587
  11. Mohammed, N. A., Abo Elnasr, H. S. & Aly, M. H. Analysis and design of an electro-optic 2 × 2 switch using Ti: KNbO3 as a waveguide based on MZI at 1.3 μ m. Opt. Quantum Electron. 46, 295–304 (2014). https://doi.org/10.1007/s11082-013-9760-7
  12. Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultracompact ultrafast-switching-speed all-optical 4×2 encoder based on photonic crystal. J. Comput. Electron. 18, 279–292 (2019). https://doi.org/10.1007/s10825-018-1278-6
  13. Jovicic, A., Li, J. & Richardson, T. Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag. 51, 26–32 (2013).
  14. Rehman, S. U., Ullah, S., Chong, P. H. J., Yongchareon, S. & Komosny, D. Visible light communication: A system perspective–Overview and challenges. Sensors 19, 1153 (2019). https://doi.org/10.3390/s19051153
  15. Matheus, L. E. M., Vieira, A. B., Vieira, L. F. M., Vieira, M. A. M. & Gnawali, O. Visible light communication: concepts, applications and challenges. IEEE Commun. Surv. Tutorials 21, 3204 (2019). https://doi.org/10.1109/COMST.2019.2913348
  16. Rust, I. C. & Asada, H. H. A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection. In IEEE International Conference on Robotics Automation (ICRA2012) 2445–2450 (2012). https://doi.org/10.1109/ICRA.2012.6224718
  17. Mohammed, N. A., Badawi, K. A., Khalaf, A. A. M. & El-Rabaie, S. Dimming control schemes combining IEEE 802.15.7 and SC-LPPM modulation schemes with an adaptive M-QAM OFDM for indoor LOS VLC systems. Opto-Electron. Rev. 28, 203–212 (2020). https://doi.org/10.24425/opelre.2020.135259
  18. Mohammed, N. A. & Badawi, K. A. Design and performance evaluation for a non-line of sight VLC dimmable system based on SC-LPPM. IEEE Access 6, 52393–52405 (2018). https://doi.org/10.1109/ACCESS.2018.2869878
  19. Shoreh, M.H., Fallahpour, A. & Salehi, J.A. Design concepts and performance analysis of multicarrier CDMA for indoor visible light communications. J. Opt. Commun. Netw. 7, 554–562 (2015). https://doi.org/10.1364/JOCN.7.000554
  20. Mossaad, M. S. A., Hranilovic, S. & Lampe, L. Visible light commu¬nications using OFDM and multiple LEDs. IEEE Trans. Commun. 63, 4304–4313 (2015). https://doi.org/10.1109/TCOMM.2015.2469285
  21. Badawi, K. A., Mohammed, N. A. & Aly, M. H. Exploring BER performance of a SC-LPPM based LOS-VLC system with distinc-tive lighting. J. Optoelectron. Adv. Mater. 20, 290–301 (2018)
  22. Mohammed, N. A, Abaza, M. R. & Aly, M. H. Improved perfor-mance of M-ary PPM in different free-space optical channels due to reed solomon code using APD. J. Sci. Eng. Res. 2, 82–85 (2011)
  23. Tsonev, D., Sinanovic, S. & Haas, H. Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless. in IEEE Vehicular Technology Conference (2012). https://doi.org/10.1109/VETECS.2012.6240060
  24. Islam, R., Choudhury, P. & Islam, M. A. Analysis of DCO-OFDM and flip-OFDM for IM/DD optical-wireless system. in 8th International Confference on Electrical and Computer Engineering: Advancing Technology for a Better Tomorrow (ICECE 2014) 32–35 (2015). https://doi.org/10.1109/ICECE.2014.7026929
  25. Hu, W. W. PAPR reduction in DCO-OFDM visible light communication systems using optimized odd and even sequences combination. IEEE Photonics J. 11, 1024 (2019). https://doi.org/10.1109/JPHOT.2019.2892871
  26. Dissanayake, S. D., Panta, K. & Armstrong, J. A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems. in IEEE Globecom Workshops (GC Wkshps 2011) 782–786 (2011). https://doi.org/10.1109/GLOCOMW.2011.6162561
  27. Dissanayake, S. D., Member, S., Armstrong, J. & Member, S. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems. J. Light. Technol. 31, 1063–1072 (2013).
  28. Dang, J., Zhang, Z. & Wu, L. Improving the power efficiency of enhanced unipolar OFDM for optical wireless communication. Electron. Lett. 51, 1681–1683 (2015). https://doi.org/10.1049/el.2015.2024
  29. Lam, E., Wilson, S. K., Elgala, H. & Little, T. D. C. Spectrally and energy efficient OFDM (SEE-OFDM) for intensity modulated optical wireless systems. The Cornell University,1–26 (2015). https://arxiv.org/abs/1510.08172v1
  30. Lowery, A. J. Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems. Opt. Express 24, 3950 (2016). https://doi.org/10.1364/oe.24.003950
  31. Elgala, H. & Little, T. Polar-based OFDM and SC-FDE links toward energy-efficient Gbps transmission under IM-DD optical system constraints. J. Opt. Commun. Netw. 7, A277–A284 (2015). https://doi.org/10.1364/JOCN.7.00A277
  32. Zhang, T. et al. A performance improvement and cost-efficient ACO-OFDM scheme for visible light communications. Opt. Commun. 402, 199–205 (2017). https://doi.org/10.1016/j.optcom.2017.06.015
  33. Kubjana, M. D., Shongwe, T. & Ndjiongue, A. R. Hybrid PLC-VLC based on ACO-OFDM. in 2018 IEEE International Conference On Intelligent And Innovative Computing Applications (ICONIC 2018) 364–368 (2018)
  34. Shawky, E., El-Shimy, M. A., Shalaby, H. M. H., Mokhtar, A. & El-Badawy, E.-S. A. Kalman Filtering for VLC Channel Estimation of ACO-OFDM Systems. in 2018 ASIA IEEE Communications And Photonics Conference (ACP) (2018).
  35. Niaz, M. T., Imdad, F., Ejaz, W. & Kim, H. S. Compressed sensing-based channel estimation for ACO-OFDM visible light communica¬tions in 5G systems. Eurasip J. Wirel. Commun. Netw. 2016, 268 (2016). https://doi.org/10.1186/s13638-016-0774-2
  36. Hao, L., Wang, D., Cheng, W., Li, J. & Ma, A. Performance enhancement of ACO-OFDM-based VLC systems using a hybrid autoencoder scheme. Opt. Commun. 442, 110–116 (2019). https://doi.org/10.1016/j.optcom.2019.03.013
  37. Vappangi, S. & Vakamulla, V. M. Channel estimation in ACO-OFDM employing different transforms for VLC. AEU-Int. J. Electron. Commun. 84, 111–122 (2018). https://doi.org/10.1016/j.aeue.2017.11.016
  38. Vappangi, S. & Vakamulla, V. M. A low PAPR multicarrier and multiple access schemes for VLC. Opt. Commun. 425, 121–132 (2018). https://doi.org/10.1016/j.optcom.2018.04.064
  39. Mounir, M., Tarrad, I. F. & Youssef, M. I. Performance evaluation of different precoding matrices for PAPR reduction in OFDM systems. Internet Technol. Lett. 1, e70 (2018). https://doi.org/10.1002/itl2.70
  40. Hu, S., Wu, G., Wen, Q., Xiao, Y. & Li, S. Nonlinearity reduction by tone reservation with null subcarriers for WiMAX system. Wirel. Pers. Commun. 54, 289–305 (2010). https://doi.org/10.1007/s11277-009-9726-z
  41. Zhang, X., Wang, Q., Zhang, R., Chen, S. & Hanzo, L. Performance analysis of layered ACO-OFDM. IEEE Access 5, 18366–18381 (2017). https://doi.org/10.1109/ACCESS.2017.2748057
  42. Anoh, K., Tanriover, C., Adebisi, B. & Hammoudeh, M. A new approach to iterative clipping and filtering papr reduction scheme for ofdm systems. IEEE Access 6, 17533–17544 (2017). https://doi.org/10.1109/ACCESS.2017.2751620
  43. Madhavi, D. & Ramesh Patnaik, M. Implementation of non linear companding technique for reducing PAPR of OFDM. Mater. Today Proc. 5, 870–877 (2018). https://doi.org/10.1016/j.matpr.2017.11.159
  44. Shaheen, I. A. A., Zekry, A., Newagy, F. & Ibrahim, R. Absolute exponential companding to reduced PAPR for FBMC/OQAM. in 2017 Palestinian International Confference on Information and Communication Technology (PICICT 2017) 60–65 (2017). https://doi.org/10.1109/PICICT.2017.17
  45. Yang, Y., Zeng, Z., Feng, S. & Guo, C. A simple OFDM scheme for VLC systems based on μ-law mapping. IEEE Photonics Technol. Lett. 28, 641–644 (2016). https://doi.org/10.1109/LPT.2015.2503481
  46. Yadav, A.K. & Prajapati, Y. K. PAPR minimization of clipped ofdm signals using tangent rooting companding technique. Wirel. Pers. Commun. 105, 1435–1447 (2019). https://doi.org/10.1007/s11277-019-06151-1
  47. Hasan, M. M. VLM precoded SLM technique for PAPR reduction in OFDM systems. Wirel. Pers. Commun. 73, 791–801 (2013). https://doi.org/10.1007/s11277-013-1217-6
  48. Freag, H. et al. PAPR reduction in VLC-OFDM system using CPM combined with PTS method. Int. J. Comput. Digit. Syst. 6, 127–132 (2017). https://doi.org/10.12785/ijcds/060304
  49. Xiao, Y. et al. PAPR reduction based on chaos combined with SLM technique in optical OFDM IM/DD system. Opt. Fiber Technol. 21, 81–86 (2015). https://doi.org/10.1016/j.yofte.2014.08.014
  50. Wang, Z., Wang, Z. & Chen, S. Encrypted image transmission in OFDM-based VLC systems using symbol scrambling and chaotic DFT precoding. Opt. Commun. 431, 229–237 (2019). https://doi.org/10.1016/j.optcom.2018.09.045
  51. Sharifi, A. A. PAPR reduction of optical OFDM signals in visible light communications. ICT Express 5, 202–205 (2019). https://doi.org/10.1016/j.icte.2019.01.001
  52. Ghassemlooy, Z., Ma, C. & Guo, S. PAPR reduction scheme for ACO-OFDM based visible light communication systems. Opt. Commun. 383, 75–80 (2017). https://doi.org/10.1016/j.optcom.2016.07.073
  53. Abd Elkarim, M., Elsherbini, M. M., AbdelKader, H. M. & Aly, M. H. Exploring the effect of LED nonlinearity on the performance of layered ACO-OFDM. Appl. Opt. 59, 7343–7351 (2020). https://doi.org/10.1364/AO.397559
  54. Kumar Singh, V. & Dalal, U. D. Abatement of PAPR for ACO-OFDM deployed in VLC systems by frequency modulation of the baseband signal forming a constant envelope. Opt. Commun. 393, 258–266 (2017). https://doi.org/10.1016/j.optcom.2017.02.065
  55. Wang, Z.-P., Xiao, J.-N., Li, F. & Chen, L. Hadamard precoding for PAPR reduction in optical direct detection OFDM systems. Optoelectron. Lett. 7, 363–366 (2011). https://doi.org/10.1007/s11801-011-1044-5
  56. Wang, Z.-P. & Zhang, S.-Z. Grouped DCT precoding for PAPR reduction in optical direct detection OFDM systems. Optoelectron. Lett. 9, 213–216 (2013). https://doi.org/10.1007/s11801-013-3021-7
  57. Ali Sharifi, A. Discrete Hartley matrix transform precoding-based OFDM system to reduce the high PAPR. ICT Express 5, 100–103 (2019). https://doi.org/10.1016/j.icte.2018.07.001
  58. El-Nabawy, M. M., Aboul-Dahab, M. A. & El-Barbary, K. PAPR Reduction of OFDM signal by using combined hadamard and modified meu-law companding techniques. Int. J. Comput. Networks Commun. 6, 71 (2014).
  59. Reddy, Y. S., Reddy, M. V. K., Ayyanna, K. & Ravikumar, G. V. The effect of NCT techniques on SC-FDMA system in presence of HPA. Int. J. Res. Computer Commun. Technol. 3, 844–848 (2014).
  60. Abd El-Rahman, A. F. et al. Companding techniques for SC-FDMA and sensor network applications. Int. J. Electron. Lett. 8, 241–255 (2020). https://doi.org/10.1080/21681724.2019.1600051
  61. Azim, A. W., Le Guennec, Y. & Maury, G. Decision-directed iterative methods for PAPR reduction in optical wireless OFDM systems. Opt. Commun. 389, 318–330 (2017). https://doi.org/10.1016/j.optcom.2016.12.026
  62. Guan, R. et al. Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers. Opt. Commun. 402, 600–605 (2017). https://doi.org/10.1016/j.optcom.2017.06.032
  63. Hu, W. W. SLM-based ACO-OFDM VLC system with low-complexity minimum amplitude difference decoder. Electron. Lett. 54, 144–146 (2018). https://doi.org/10.1049/el.2017.3158
  64. Offiong, F. B., Sinanovic, S. & Popoola, W. O. On PAPR reduction in pilot-assisted optical OFDM communication systems. IEEE Access 5, 8916–8929 (2017). https://doi.org/10.1109/ACCESS.2017.2700877
  65. Xu, W., Wu, M., Zhang, H., You, X. & Zhao, C. ACO-OFDM-specified recoverable upper clipping with efficient detection for optical wireless communications. IEEE Photonics J. 6, (2014). https://doi.org/10.1109/JPHOT.2014.2352643
Go to article

Authors and Affiliations

Nazmi A. Mohammed
1
Mohamed M. Elnabawy
2 3
Ashraf A. M. Khalaf
2
ORCID: ORCID

  1. Photonic Research Lab, Electrical Engineering Department, College of Engineering, Shaqra University, Dawadmi 11961, Kingdom of Saudi Arabia
  2. Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt, P.O. Box 61111, Minia, Egypt
  3. Electronics and Communication Department, Modern Academy for Engineering and Technology, Maadi 11585, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Universal filtered multi-carrier (UFMC) is being studied as the favourable waveforms supporting the visible light communication broadcasting systems. However, the UFMC system faces a serious performance degradation on the transmitter side due to its high peak-to-average power ratio (PAPR). High PAPR of the signal is an analytical intention parameter for mobile networks, and it is necessary to minimize it as much as possible. This paper focuses on the PAPR reduction of the UFMC scheme. An efficient hybrid method of the PAPR reduction has been proposed and analysed through the Matlab™ simulation. The proposed hybrid scheme consists of a mixture of the selected-mapping method and the discrete Hartley transform precoding for a UFMC system (SLM-DHT-P-UFMC). The simulation results show that the proposed hybrid system has a better PAPR reduction performance compared to traditional SLM-UFMC and DHT-P-UFMC systems. Hence, SLM-DHT-P-UFMC is considered to be the suggested scheme in visible light communication broadcasting systems.
Go to article

Bibliography

  1. Mohammed, N. A. & Elkarim, M. A. Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC. Opt. Express 23, 20297–20313 (2015). https://doi.org/10.1364/OE.23.020297
  2. Gerzaguet, R. et al. The 5G candidate waveform race: a comparison of complexity and performance. EURASIP J. Wirel. Commun. Netw. 2017, 13 (2017). https://doi.org/10.1186/s13638-016-0792-0
  3. Ambatali, C. D. M. & Marciano, J. J. S. Performance evaluation of the UFMC scheme under various transmission impairments. in 2016 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT) 24–28 (2017). https://doi.org/10.1109/COMNETSAT.2016.7907410
  4. Vakilian, V., Wild, T., Schaich, F., Ten Brink, S. & Frigon, J. F. Universal-filtered multi-carrier technique for wireless systems beyond LTE. in 2013 IEEE Globecom Workshops (GC Wkshps) 223–228 (2013). https://doi.org/10.1109/GLOCOMW.2013.6824990
  5. Naga Rani, P. & Santhi Rani, C. H. UFMC: The 5G modulation technique. in 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (2016). https://doi.org/10.1109/ICCIC.2016.7919714
  6. Jebbar, H., El Hassani, S. & El Abbassi, A. Performance study of 5G multicarrier waveforms. in 2017 International Conference on Wireless Networks and Mobile Communications (WINCOM) (2017). https://doi.org/10.1109/WINCOM.2017.8238183
  7. 5G Waveform Candidates: Rohde & Schwarz White Paper - GSA. https://gsacom.com/paper/5g-waveform-candidates-rohde-schwarz- white-paper/
  8. Wild, T., Schaich, F. & Chen, Y. 5G air interface design based on universal filtered (UF-)OFDM. in 2014 19th International Conference on Digital Signal Processing, 699–704 (2014). https://doi.org/10.1109/ICDSP.2014.6900754
  9. Schaich, F., Wild, T. & Chen, Y. Waveform contenders for 5G - Suitability for short packet and low latency transmissions. in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring) (2014). https://doi.org/10.1109/VTCSpring.2014.7023145
  10. Baig, I. et al. A low PAPR DHT precoding based UFMC scheme for 5G communication systems. in 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT) 425−428 (2019). https://doi.org/10.1109/CoDIT.2019.8820502
  11. Baig, I. et al. A Low PAPR universal filtered multi-carrier system for 5G machine type communications. in 2019 Wireless Days (WD) 1–4 (2019). https://doi.org/10.1109/WD.2019.8734188
  12. Misra, J. & Mandal, R. Comparative analysis of PAPR reduction techniques in OFDM using precoding techniques. Int. J. Sci. Res. Dev. 3, 1041–1043 (2015).
  13. Sandoval, F., Poitau, G. & Gagnon, F. Hybrid peak-to-average power ratio reduction techniques: review and performance comparison. IEEE Access 5, 27145–27161 (2017). https://doi.org/10.1109/ACCESS.2017.2775859
  14. Zhang, Y., Liu, K. & Liu, Y. A Novel PAPR reduction algorithm based on SLM technique in UFMC systems. in 2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops) 178–183 (2018). https://doi.org/10.1109/ICCChinaW.2018.8674491
Go to article

Authors and Affiliations

Eslam M. Shalaby
1
E. Dessouky
2
Saleh Hussin
2

  1. Electronics and Communication Engineering Department, Higher Technological Institute, 10th of Ramadan City, Sharqia, 44629 Egypt
  2. Electronics and Communication Engineering Department, Faculty of Engineering Menoufia University, Menoufia, 32511 Egypt
Download PDF Download RIS Download Bibtex

Abstract

The compositional graded quaternary barriers (GQBs) instead of ternary/conventional quantum barriers (QBs) have been used to numerically enhance the efficiency of AlGaN-based ultraviolet light-emitting diode (LED). The performance of LED with GQBs is examined through carrier concentrations, energy band diagrams, radiative recombination, electron and hole flux, internal quantum efficiency (IQE), and emission spectrum. As a function of the operating current density, a considerable reduction in efficiency droop is observed in the device with composition-graded quaternary barriers as compared to the conventional structure. The efficiency droop in case of a conventional LED is ~77% which decreased to ~33% in case of the proposed structure. Moreover, the concentration of electrons and holes across the active region in case of the proposed structure is increased to ~156% and ~44%, respectively.
Go to article

Bibliography

  1. Würtele, M. et al. Application of GaN-based ultraviolet-C light emitting diodes–UV LEDs–for water disinfection. Water Res. 45, 1481–1489 (2011), https://doi.org/10.1016/j.watres.2010.11.015
  2. Khan, A., Balakrishnan, K. & Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2, 77–84 (2008), https://doi.org/10.1038/nphoton.2007.293
  3. Usman, M., Malik, S. & Munsif, M. AlGaN-based ultraviolet light-emitting diodes: Challenges and Opportunities. Luminescence 36, 294–305 (2021), https://doi.org/10.1002/bio.3965
  4. Hirayama, H., Maeda, N., Fujikawa, S., Toyoda, S. & Kamata, N. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 53, 100209 (2014), http://doi.org/10.7567/JJAP.53.100209
  5. Kneissl, M. A brief review of III-nitride UV emitter technologies and their applications. in III-Nitride Ultraviolet Emitters: Technology and Applications. Springer Series in Materials Science, vol 227. (eds. Kneissl, M. & Rass, J.) 1–25 (Springer Cham, 2016). https://doi.org/10.1007/978-3-319-24100-5_1
  6. Usman, M., Malik, S., Khan, M. A. & Hirayama, H. Suppressing the efficiency droop in AlGaN-based UVB LEDs. Nanotechnology 32, 215703 (2021), https://doi.org/10.1088/1361-6528/abe4f9
  7. Heilingloh, C. S. et al. Susceptibility of SARS-CoV-2 to UV irradiation. Am. J. Infect. Control 48, 1273¬1275 (2020), https://doi.org/10.1016/j.ajic.2020.07.031
  8. Khan, M. A., Shatalov, M., Maruska, H., Wang, H. & Kuokstis, E. III–nitride UV devices. Jpn. J. Appl. Phys. 44, 7191 (2005), https://doi.org/10.1143/jjap.44.7191
  9. Kneissl, M. et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 26, 014036 (2010), https://doi.org/10.1088/0268-1242/26/1/014036
  10. Shatalov, M. et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl. Phys. Express 5, 082101 (2012), https://doi.org/10.1143/apex.5.082101
  11. Pernot, C. et al. Development of high efficiency 255–355 nm AlGaN‐based light‐emitting diodes. Phys. Status Solidi A 208, 1594–1596 (2011), https://doi.org/10.1002/pssa.201001037
  12. Huang, C., Zhang, H. & Sun, H. Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system. Nano Energy, 77, 105149 (2020), https://doi.org/10.1016/j.nanoen.2020.105149
  13. Chen, K. et al. Effect of dislocations on electrical and optical properties of n-type Al 0.34 Ga 0.66 N. Appl. Phys. Lett. 93, 192108 (2008), https://doi.org/10.1063/1.3021076
  14. Hirayama, H., Tsukada, Y., Maeda, T. & Kamata, N. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Express 3, 031002 (2010), https://doi.org/10.1143/apex.3.031002
  15. Huang, M.-F. & Lu, T.-H. Optimization of the active-layer structure for the deep-UV AlGaN light-emitting diodes. IEEE J. Quantum Electron. 42, 820–826 (2006), https://doi.org/10.1109/JQE.2006.877217
  16. Lu, L. et al. Improving performance of algan‐based deep‐ultraviolet light‐emitting diodes by inserting a higher Al‐content algan layer within the multiple quantum wells. Phys. Status Solidi A 214, 1700461 (2017), https://doi.org/10.1002/pssa.201700461
  17. Arif, R. A., Ee, Y. K. & Tansu, N. Nanostructure engineering of staggered InGaN quantum wells light emitting diodes emitting at 420–510 nm. Phys. Status Solidi A 205, 96–100 (2008), https://doi.org/10.1002/pssa.200777478
  18. Usman, M. et al. Zigzag-shaped quantum well engineering of green light-emitting diode. Superlattices Microstruct. 132, 106164, (2019) https://doi.org/10.1016/j.spmi.2019.106164
  19. Usman, M. et al. Enhanced internal quantum efficiency of bandgap-engineered green W-shaped quantum well light-emitting diode. Appl. Sci. 9, 77 (2019), https://doi.org/10.3390/app9010077
  20. Yang, G. et al. Design of deep ultraviolet light-emitting diodes with staggered AlGaN quantum wells. Physica E 62, 55–58 (2014), https://doi.org/10.1016/j.physe.2014.04.014
  21. Zhang, Y. et al. The improvement of deep-ultraviolet light-emitting diodes with gradually decreasing Al content in AlGaN electron blocking layers. Superlattices Microstruct. 82, 151–157 (2015), https://doi.org/10.1016/j.spmi.2015.02.004
  22. Li, Y. et al. Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers. IEEE Photonics J. 5, 8200309–8200309 (2013), https://doi.org/10.1109/JPHOT.2013.2271718
  23. Fan, X. et al. Efficiency improvements in AlGaN-based deep ultraviolet light-emitting diodes using inverted-V-shaped graded Al composition electron blocking layer. Superlattices Microstruct. 88, 467–473 (2015), https://doi.org/10.1016/j.spmi.2015.10.003
  24. Huang, J. et al. Study of deep ultraviolet light-emitting diodes with ap-AlInN/AlGaN superlattice electron-blocking layer. J. Electron. Mater. 46, 4527–4531 (2017), https://doi.org/10.1007/s11664-017-5413-0
  25. Usman, M., Jamil, T., Malik, S. & Jamal, H. Designing anti-trapezoidal electron blocking layer for the amelioration of AlGaN-based deep ultraviolet light-emitting diodes internal quantum efficiency. Optik 232, 166528 (2021). https://doi.org/10.1016/j.ijleo.2021.166528
  26. Zhang, X. et al. Efficiency improvements in AlGaN-based deep-ultraviolet light-emitting diodes with graded superlattice last quantum barrier and without electron blocking layer. J. Electron. Mater. 48, 460–466 (2019). https://doi.org/10.1007/s11664-018-6716-5
  27. Li, K., Zeng, N., Liao, F. & Yin, Y. Investigations on deep ultraviolet light-emitting diodes with quaternary AlInGaN streamlined quantum barriers for reducing polarization effect. Superlattices Microstruct. 145, 106601 (2020). https://doi.org/10.1016/j.spmi.2020.106601
  28. Shatalov, M. et al. Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells. IEEE J. Sel. Top. Quantum Electron. 8, 302–309 (2002). https://doi.org/10.1109/2944.999185
  29. Chen, X., Wang, D. & Fan, G. Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with AlInGaN/AlInGaN super-lattice electron blocking layer. J. Electron. Mater. 48, 2572–2576 (2019). https://doi.org/10.1007/s11664-019-07001-3
  30. Kim, S. J. & Kim, T. G. Numerical study of enhanced performance in InGaN light-emitting diodes with graded-composition AlGaInN barriers. J. Opt. Soc. Korea 17, 16-21 (2013) . https://doi.org/10.3807/JOSK.2013.17.1.016
  31. Adivarahan, V. et al. Ultraviolet light-emitting diodes at 340 nm using quaternary AlInGaN multiple quantum wells. Appl. Phys. Lett. 79, 4240–4242 (2001). https://doi.org/10.1063/1.1425453
  32. Chen, C. et al. Pulsed metalorganic chemical vapor deposition of quaternary AlInGaN layers and multiple quantum wells for ultraviolet light emission. Jpn. J. Appl. Phys. 41, 1924 (2002). https://doi.org/10.1143/jjap.41.1924
Go to article

Authors and Affiliations

Shahzeb Malik
1
Muhammad Usman
1
ORCID: ORCID
Masroor Hussain
2
Munaza Munsif
1
Sibghatullah Khan
1
Saad Rasheed
1
Shazma Ali
1

  1. Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460, Khyber Pakhtunkhwa, Pakistan
  2. Faculty of Computer Sciences and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460, Khyber Pakhtunkhwa, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a comprehensive look at the perspectives on the use of THz in digital communication systems. The publication aims to focus on arguments that justify a significant increase in the frequency of radio links and their integration with fibre-based networks. Comparison of THz links with their microwave and optical counterparts is discussed from basic physical limitations to technological constraints. Main attention is paid to the available channel capacity resulting from its bandwidth and signal-to-noise ratio. The short final discussion is about technology platforms that seem to be crucial to the availability of suitable THz sources. According to the author, the biggest advantage of using bands in the range of several hundred GHz for a digital data transmission is their use for mobile communication over short distances, as well as for broadband indoor links. However, these applications require a development of compact electronic THz sources with low noise and power reaching single watts. This is beyond the range of the most popular silicon-based technology platform, although a significant progress can be expected with the development of technologies based on wide bandgap semiconductors. Fibre optic connections remain the unquestioned leader in communication over long distances and permanent links.

Go to article

Authors and Affiliations

J. Marczewski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a dual-band plasmonic solar cell. The proposed unit structure gathers two layers, each layer consists of a silver nanoparticle deposited on a GaAs substrate and covered with an ITO layer, It reveals two discrete absorption bands in the infra-red part of the solar spectrum. Nanoparticle structures have been used for light-trapping to increase the absorption of plasmonic solar cells. By proper engineering of these structures, resonance frequencies and absorption coefficients can be controlled as it will be elucidated. The simulation results are achieved using CST Microwave Studio through the finite element method. The results indicate that this proposed dual-band plasmonic solar cell exhibits an absorption bandwidth, defined as the full width at half maximum, reaches 71 nm. Moreover, It can be noticed that by controlling the nanoparticle height above the GaAs substrate, the absorption peak can be increased to reach 0.77.

Go to article

Authors and Affiliations

Ashraf A. M. Khalaf
ORCID: ORCID
M. D. Gaballa
Download PDF Download RIS Download Bibtex

Abstract

Thermo-optic properties enhancement of the bi-stable temperature threshold sensors based on a partially filled photonic crystal fiber was reported. Previously tested transducers filled with a selected group of pure n-alkanes had in most cases differences between switching ON and OFF states. Therefore, the modification of filling material by using additional crystallization centers in the form of gold nanoparticles was applied to minimize this undesirable effect. The evaluation of the thermodynamic properties of pentadecane and its mixtures with 14 nm spherical Au nanoparticles based on the differential scanning calorimetry measurements was presented. Optical properties analysis of sensors prepared with these mixtures has shown that they are bounded with refractive index changes of the filling material. Particular sensor switches ON before melting process begins and switches OFF before crystallization starts. Admixing next group of n-alkanes with these nanoparticles allows to design six sensors transducers which change ON and OFF states at the same temperature. Thus, the transducers with a wider temperature range for fiber-optic multi-threshold temperature sensor tests will be used.

Go to article

Authors and Affiliations

N. Przybysz
P. Marć
E. Tomaszewska
J. Grobelny
L.R. Jaroszewicz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present the electrical and electro-optical characterizations of an InAs/GaSb type-2 superlattice barrier photodetector operating in the full longwave infrared spectral domain. The fabricated detectors exhibited a 50% cut-off wavelength around 14 μm at 80 K and a quantum efficiency slightly above 20%. The dark current density was of 4.6 × 10 2 A/cm2 at 80 K and a minority carrier lateral diffusion was evaluated through dark current measurements on different detector sizes. In addition, detector spectral response, its dark current-voltage characteristics and capacitance-voltage curve accompanied by electric field simulations were analyzed in order to determine the operating bias and the dark current regimes at different biases. Finally, dark current simulations were also performed to estimate a minority carrier lifetime by comparing experimental curves with simulated ones.

Go to article

Authors and Affiliations

R. Alchaar
J. B. Rodriguez
L. Höglund
S. Naureen
E. Costard
P. Christol
Download PDF Download RIS Download Bibtex

Abstract

Optical sampling based on ultrafast optical nonlinearities is a useful technique to monitor the waveforms of ultrashort optical pulses. In this paper, we present a new implementation of optical waveform sampling systems by employing our newly constructed free-running mode-locked fibre laser with a tunable repetition rate and a low timing jitter, an all-optical waveform sampler with a highly nonlinear fibre (HNLF), and our developed computer algorithm for optical waveform display and measurement, respectively. Using a femtosecond fibre laser to generate the highly stable optical sampling pulses and exploiting the four-wave mixing effect in a 100 m-long HNLF, we successfully demonstrate the all-optical waveform sampling of a 10 GHz optical clock pulse sequence with a pulse width of 1.8 ps and a 80 Gbit/s optical data signal, respectively. The experimental results show that waveforms of the tested optical pulse signals are accurately reproduced with a pulse width of 2.0 ps. This corresponds to a temporal resolution of 0.87 ps for optical waveform measurement. Moreover, the optical eye diagram of a 10Gbit/s optical data signal with a 1.8 ps pulse width is also accurately measured by employing our developed optical sampling system.

Go to article

Authors and Affiliations

Y. Liu
Y.G. Zhang
D. Tang
Download PDF Download RIS Download Bibtex

Abstract

The paper presents experimental results of the lifetime of light induced excess carriers in the n-type silicon. The lifetimes of carriers of silicon crystals were analysed as a function of the intensity of light illuminating the sample. As a measurement method of the lifetime of carriers, the photoacoustic method in a transmission configuration with different surfaces was used. The dependence character was next analysed in the frame of the Shockley Reed Hall statistics in approximation of the light low intensity.

Go to article

Authors and Affiliations

L. Bychto
M. Maliński
Download PDF Download RIS Download Bibtex

Abstract

Number of trace compounds (called biomarkers), which occur in human breath, provide an information about individual feature of the body, as well as on the state of its health. In this paper we present the results of experiments about detection of certain biomarkers using laser absorption spectroscopy methods of high sensitivity. For NO, OCS, C2H6, NH3, CH4, CO and CO(CH3)2 an analysis of the absorption spectra was performed. The influence of interferents contained in exhaled air was considered. Optimal wavelengths of the detection were found and the solutions of the sensors, as well as the obtained results were presented. For majority of the compounds mentioned above the detection limits applicable for medicine were achieved. The experiments showed that the selected optoelectronic techniques can be applied for screening devices providing early diseases detection.

Go to article

Authors and Affiliations

T. Stacewicz
Z. Bielecki
J. Wojtas
P. Magryta
J. Mikolajczyk
D. Szabra
Download PDF Download RIS Download Bibtex

Abstract

Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TiO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

Go to article

Authors and Affiliations

M. Hosseinnezhad
S. Rouhani
Download PDF Download RIS Download Bibtex

Abstract

In this study a metal clad waveguide sensor with a metamaterial guiding layer is analyzed. Sensitivity of the proposed sensor is derived using dispersion and Fresenal’s equations for waveguiding mode and reflection mode. While efficiently analyzing and comparing the results with the existing one, some interesting findings are achieved. It is observed that the proposed sensor shows larger cover layer sensitivity and larger adlayer sensitivity compared to the dielectric guiding layer sensor due to adsorbtive properties of metamaterial. Henceforth, it concludes that the proposed sensor shows sensitivity improvement over a dielectric guiding layer sensor.

Go to article

Authors and Affiliations

A. Upadhyay
Y.K. Prajapati
R. Tripathi
V. Singh
J.P. Saini
Download PDF Download RIS Download Bibtex

Abstract

Non-intentionally doped GaSb epilayers were grown by molecular beam epitaxy (MBE) on highly mismatched semi-insulating GaAs substrate (001) with 2 offcut towards (110). The effects of substrate temperature and the Sb/Ga flux ratio on the crystalline quality, surface morphology and electrical properties were investigated by Nomarski optical microscopy, X-ray diffraction (XRD) and Hall measurements, respectively. Besides, differential Hall was used to investigate the hole concentration behaviour along the GaSb epilayer. It is found that the crystal quality, electrical properties and surface morphology are markedly dependent on the growth temperature and the group V/III flux ratio. Under the optimized parameters, we demonstrate a low hole concentration at very low growth temperature. Unfortunately, the layers grown at low temperature are characterized by wide FWHM and low Hall mobility.

Go to article

Authors and Affiliations

D. Benyahia
Łukasz Kubiszyn
ORCID: ORCID
Krystian Michalczewski
ORCID: ORCID
A. Kębłowski
Piotr Martyniuk
ORCID: ORCID
J. Piotrowski
A. Rogalski
Download PDF Download RIS Download Bibtex

Abstract

The work presents doping characteristics and properties of high Si−doped InGaAs epilayers lattice−matched to InP grown by low pressure metal−organic vapour phase epitaxy. Silane and disilane were used as dopant sources. The main task of investigations was to obtain heavily doped InGaAs epilayers suitable for usage as plasmon−confinement layers in the construction of mid−infrared InAlAs/InGaAs/InP quantum−cascade lasers (QCLs). It requires the doping concentration of 1×1019 cm–3 and 1×1020 cm–3 for lasers working at 9 μm and 5 μm, respectively. The electron concentration increases linearly with the ratio of gas−phase molar fraction of the dopant to III group sources (IV/III). The highest electron concentrations suitable for InGaAs plasmon−contact layers of QCL was achieved only for disilane. We also observed a slight influence of the ratio of gas−phase molar fraction of V to III group sources (V/III) on the doping efficiency. Structural measurements using high−resolution X−ray diffraction revealed a distinct influence of the doping concentration on InGaAs composition what caused a lattice mismatch in the range of –240 ÷ –780 ppm for the samples doped by silane and disilane. It has to be taken into account during the growth of InGaAs contact layers to avoid internal stresses in QCL epitaxial structures.

Go to article

Authors and Affiliations

B. Ściana
M. Badura
W. Dawidowski
K. Bielak
D. Radziewicz
D. Pucicki
A. Szyszka
K. Żelazna
M. Tłaczała
Download PDF Download RIS Download Bibtex

Abstract

ZnO thin layers were deposited on p-type silicon substrates by the sol-gel spin-coating method and, then, annealed at various temperatures in the range of 573–873 K. Photoluminescence was carried out in the temperature range of 20–300 K. All samples showed two dominant peaks that have UV emissions from 300 nm to 400 nm and visible emissions from 400 nm to 800 nm. Influence of temperature on morphology and chemical composition of fabricated thin layers was examined by XRD, SEM, FTIR, and Raman spectroscopy. These measurements indicate that ZnO structure is obtained for samples annealed at temperatures above 573 K. It means that below this temperature, the obtained thin films are not pure zinc oxide. Thus, annealing temperature significantly affected crystallinity of the thin films.

Go to article

Authors and Affiliations

M. Sypniewska
R. Szczesny
P. Popielarski
ORCID: ORCID
K. Strzalkowski
B. Derkowska-Zielinska
Download PDF Download RIS Download Bibtex

Abstract

Graphene applications in electronic and optoelectronic devices have been thoroughly and intensively studied since graphene discovery. Thanks to the exceptional electronic and optical properties of graphene and other two-dimensional (2D) materials, they can become promising candidates for infrared and terahertz photodetectors.

Quantity of the published papers devoted to 2D materials as sensors is huge. However, authors of these papers address them mainly to researches involved in investigations of 2D materials. In the present paper this topic is treated comprehensively with including both theoretical estimations and many experimental data.

At the beginning fundamental properties and performance of graphene-based, as well as alternative 2D materials have been shortly described. Next, the position of 2D material detectors is considered in confrontation with the present stage of infrared and terahertz detectors offered on global market. A new benchmark, so-called “Law 19”, used for prediction of background limited HgCdTe photodiodes operated at near room temperature, is introduced. This law is next treated as the reference for alternative 2D material technologies. The performance comparison concerns the detector responsivity, detectivity and response time. Place of 2D material-based detectors in the near future in a wide infrared detector family is predicted in the final conclusions.

Go to article

Authors and Affiliations

A. Rogalski
Małgorzata Kopytko
ORCID: ORCID
Piotr Martyniuk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In recent years, GaN-based light-emitting diode (LED) has been widely used in various applications, such as RGB lighting system, full-colour display and visible-light communication. However, the internal quantum efficiency (IQE) of green LEDs is significantly lower than that of other visible spectrum LED. This phenomenon is called “green gap”. This paper briefly describes the physical mechanism of the low IQE for InGaN/GaN multiple quantum well (MQW) green LED at first. The IQE of green LED is limited by the defects and the internal electric field in MQW. Subsequently, we discuss the recent progress in improving the IQE of green LED in detail. These strategies can be divided into two categories. Some of these methods were proposed to enhance crystal quality of InGaN/GaN MQW with high In composition and low density of defects by modifying the growth conditions. Other methods focused on increasing electron-hole wave function overlap by eliminating the polarization effect.

Go to article

Authors and Affiliations

Q. Zhou
M. Xu
H. Wang
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The article presents an overview of polymeric materials for flexible substrates in photovoltaic (PV) structures that could be used as power supply in the personal electronic systems. Four types of polymers have been elected for testing. The first two are the most specialized and heat resistant polyimide films. The third material is transparent polyethylene terephthalate film from the group of polyesters which was proposed as a cheap and commercially available substrate for the technology of photovoltaic cells in a superstrate configuration. The last selected polymeric material is a polysiloxane, which meets the criteria of high elasticity, is temperature resistant and it is also characterized by relatively high transparency in the visible light range. For themost promising of these materials additional studies were performed in order to select those of them which represent the best optical, mechanical and temperature parameters according to their usage for flexible substrates in solar cells.

Go to article

Authors and Affiliations

K. Znajdek
Maciej Sibiński
ORCID: ORCID
A. Strąkowska
Z. Lisik
Download PDF Download RIS Download Bibtex

Abstract

In this paper an analysis of the surface properties of (Ti,Pd,Eu)Ox thin films prepared by magnetron sputtering has been described. In particular, the results of composition and structure investigations were studied in relation to the surface state and optical properties. It was found that (Ti,Pd,Eu)Ox film was nanocrystalline and had a rutile structure. The average crystallites size was equal to 7.8 nm. Films were homogeneous and had densely packed grains. Investigation of the surface properties by XPS showed that titanium was present at 4+ state (in the TiO2form), palladium occurred as PdO2(also at 4+ state), while europium was in Eu2O3form (at 3+ state). In comparison with the unmodiffied TiO2, the coating with Pd and Eu additives had a rather high transparency (approx. 47%) in the visible light range, its optical absorption edge was shifted towards into the longer wavelengths (from 345 nm to 452 nm), and the width of optical energy gap Egopt was nearly twice lower (1.82 eV). Besides, the resistivity of (Ti,Pd,Eu)Ox at room temperature was 1×103 Wcm. In the case of the film as-deposited on Si substrate (p-type) the generation of photocurrent as a response to light beam excitation (λexc = 527 nm) was observed.

Go to article

Authors and Affiliations

D. Wojcieszak
D. Kaczmarek
J. Domaradzki
Download PDF Download RIS Download Bibtex

Abstract

Erbium-doped lead silicate glass has been investigated for near-infrared emission and up-conversion applications. Near-infrared emission due to 4I13/24I15/2 transition of Er3+ is relatively broad (70.5 nm) and long-lived (3.7 ms). Also, up-conversion luminescence spectra of Er3+ ions in lead silicate glass have been examined as a function of temperature. The relative intensities of luminescence bands corresponding to 2H11/24I15/2 and 4S3/24I15/2 transitions of Er3+ were determined with temperature. The fluorescence intensity ratio and temperature sensitivity were calculated. The maximum sensitivity for Er3+ doped lead silicate glass is close to 26.4 × 10−4 K−1 at T = 590 K.

Go to article

Authors and Affiliations

W.A. Pisarski
J. Pisarska
R. Lisiecki
W. Ryba-Romanowski
Download PDF Download RIS Download Bibtex

Abstract

A novel methodology was implemented in the present study to concurrently control power conversion efficiency (η) and durability (D) of co-sensitized dye solar cells. Applying response surface methodology (RSM) and Desirability Function (DF), the main influential assembling (dye volume ratio and anti-aggregation agent concentration) and operational (performance temperature) parameters were systematically changed to probe their main and interactive effects on the η and D responses. Individual optimization based on RSM elucidated that D can be solely controlled by changing the ratio of vat-based organic photosensitizers, whereas η takes both effects of dye volume ratio and anti-aggregation concentration into account. Among the studied factors, the performance temperature played the most vital role in η and D regulation. In particular, however, multi-objective optimization by DF explored the degree to which one should be careful about manipulation of assembling and operational parameters in the way maximization of performance of a co-sensitized dye solar cell.

Go to article

Authors and Affiliations

M. Hosseinnezhad
A. Shadman
M. Reza Saeb
Y. Mohammadi
Download PDF Download RIS Download Bibtex

Abstract

The electron field and photo-field emission from GaN nanostructures has been analyzed in this review. In order to explain the obtained experimental results, a model was proposed taking into account the change in carrier concentration distribution in the main and the satellite valley during the emission process. The lowering of work function (due to the increased number of carriers in the satellite valley) can explain the decrease in the Fowler-Nordheim plot slope. It was shown that the energy difference between the main and satellite valley in GaN was decreased in the case of quantum confinement, thus increasing the probability of electron transition from Γ to X valley at same electric fields.

Investigations of electron photo-field emission demonstrated that the Fowler–Nordheim plots of the emission current have different slopes for nonilluminated and illuminated devices. A model based on the electron emission from valleys having different specific electron affinities is proposed to explain the experimental results. In the absence of illumination the emission takes place only from the lower valley. Upon UV illumination and presence of a high electric field at the emitter tip, the upper valley of the conduction band appears to be occupied by electrons generated at the valence band.

Go to article

Authors and Affiliations

V. Litovchenko
A. Evtukh
A. Grygoriev
Download PDF Download RIS Download Bibtex

Abstract

A description of the status of the art of experimental and theoretical investigations of local crystalline structures of tetrahedron ordered ternary and quaternary semiconducting alloys is presented. Experimental EXAFS data and FTIR analysis are summarized and analyzed using both the Rigid Network Cations theoretical model and the Strained-tetrahedra model. Internal preferences of ion pairs in ternary and quaternary alloys are discussed. Several ternary systems of different structures show ideal quasi-canonical Bernoulli distributions, while others are characterized by extreme preferences in which one, several or even all configurations are depressed or even lacking. The results demonstrate that the validity of the Bernoulli distribution is limited and not fulfilled in many systems. This article is an expanded version of the scientific reports presented at the International Conference on Semiconductor Nanostructures for Optoelectronics and Biosensors 2016 ICSeNOB2016, May 22–25, 2016, Rzeszow, Poland.

Go to article

Authors and Affiliations

A. Kisiel
B.V. Robouch
A. Marcelli

This page uses 'cookies'. Learn more