Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 38
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study shows the results of the investigation of the strength performance, and residual strength of a single component inorganic binder

system Cast Clean S27®. The study was conducted using three different foundry sand sources in South Africa. Sample A is an alluvial

coastal sample, sample B is an alluvial riverbed sample and Sample C is a blasted sample from a consolidated quartzite rock. The binder

was also cured using three different curing mechanisms. The aim of the investigation was to determine the variation of strength

performance and residual strength between the different South African sand sources based upon the physical and chemical properties of

the sand sources. The moulding sand was prepared using three possible curing mechanisms which are carbon dioxide curing, ester curing

and heat curing. The strength measurements were determined by bending strength. Sample A and sample C sand had good strength

development. Sample B sand had inferior strength development and excellent high temperature residual strength. The study showed that

the single component inorganic binders have good strength development and low residual strength. The silica sand properties have major

contributing factors on both strength development and residual strength. The degree of influence of silica sand properties on strength

performance and residual strength is dependent on the time of curing and method of curing.

Go to article

Authors and Affiliations

F.C. Banganayi
K. Nyembwe
H. Polzin
Download PDF Download RIS Download Bibtex

Abstract

This paper focuses on the thermal behavior of the starch-based binder (Albertine F/1 by Hüttenes-Albertus) used in foundry technology of molding sand. The analysis of the course of decomposition of the starch material under controlled heating in the temperature range of 25-1100°C was conducted. Thermal analysis methods (TG-DTG-DSC), pyrolysis gas chromatography coupled with mass spectrometry (Py-GC/MS) and diffuse reflectance spectroscopy (DRIFT) were used. The application of various methods of thermal analysis and spectroscopic methods allows to verify the binder decomposition process in relation to conditions in the form in both inert and oxidizing atmosphere. It was confirmed that the binder decomposition is a complex multistage process. The identification of CO2 formation at set temperature range indicated the progressive process of decomposition. A qualitative evaluation of pyrolysis products was carried out and the course of structural changes occurring in the presence of oxygen was determined based on thermo-analytical investigations the temperature of the beginning of binder degradation in set condition was determined. It was noticed that, significant intensification of Albertine F/1 sample decomposition with formation of more degradation products took place at temperatures above 550ºC. Aromatic hydrocarbons were identified at 1100ºC.

Go to article

Authors and Affiliations

K. Kaczmarska
S. Żymankowska-Kumon
B. Grabowska
A. Bobrowski
S. Cukrowicz
Download PDF Download RIS Download Bibtex

Abstract

The objective of the presented paper is to investigate the performance of concrete containing volcanic scoria as cement replacement after 7, 28, 90, and 180 days curing. Five performance indicators have been studied. Compressive strength, water permeability, porosity, chloride penetrability, and reinforcement corrosion resistance have all been evaluated. Concrete specimens were produced with replacement levels ranging from 10 to 35%. Test results revealed that curing time had a large influence on all the examined performance indicators of scoria-based concrete. Water permeability, porosity, and chloride penetrability of scoria-based concrete mixes were much lower than that of plain concrete. Concretes produced with scoria-based binders also decelerated rebar corrosion, particularly after longer curing times. Furthermore, an estimation equation has been developed by the authors to predict the studied performance indicators, focusing on the curing time and the replacement level of volcanic scoria. SEM/EDX analysis has been reported as well.

Go to article

Authors and Affiliations

A. M. al-Swaidani
Download PDF Download RIS Download Bibtex

Abstract

Casting industry has been enriched with the processes of mechanization and automation in production. They offer both better working standards, faster and more accurate production, but also have begun to generate new opportunities for new foundry defects. This work discusses the disadvantages of processes that can occur, to a limited extend, in the technologies associated with mould assembly and during the initial stages of pouring. These defects will be described in detail in the further part of the paper and are mainly related to the quality of foundry cores, therefore the discussion of these issues will mainly concern core moulding sands. Four different types of moulding mixtures were used in the research, representing the most popular chemically bonded moulding sands used in foundry practise. The main focus of this article is the analysis of the influence of the binder type on mechanical and thermal deformation in moulding sands.
Go to article

Authors and Affiliations

A. Grabarczyk
1
ORCID: ORCID
K. Major-Gabryś
1
ORCID: ORCID
J. Jakubski
1
ORCID: ORCID
St.M. Dobosz
1
ORCID: ORCID
D. Bolibruchová
2
ORCID: ORCID
R. Pastirčák
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Foundry of Non-ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  2. University of Zilina, Žilinská Univerzita v Žiline, Faculty of Mechanical Engineering, Žilina, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

The possibilities of using an inorganic phosphate binder for the ablation casting technology are discussed in this paper. This kind of binder was selected for the process due to its inorganic character and water-solubility. Test castings were made in the sand mixture containing this binder. Each time during the pouring liquid alloy into the molds and solidification process of castings, the temperature in the mold was examined. Then the properties of the obtained castings were compared to the properties of the castings solidifying at ambient temperature in similar sand and metal molds. Post-process materials were also examined - quartz matrix and water. It has been demonstrated that ablation casting technology promotes refining of the microstructure, and thus upgrades the mechanical properties of castings (Rm was raised about approx. 20%). Properties of these castings are comparable to the castings poured in metal moulds. However, the post-process water does not meet the requirements of ecology, which significantly reduces the possibility of its cheap disposal.
Go to article

Bibliography


[1] Puzio, S., Kamińska, J., Angrecki, M. & Major-Gabryś, K. (2020). The Influence of Inorganic Binder Type on Properties of Self-Hardening Moulding Sands Intended for the Ablation Casting Process. Journal of Applied Materials Engineering. 60(4), 99-108.
[2] United States Patent No. US 7,159,642 B2.
[3] Dudek, P., Fajkiel, A., Reguła, T. & Bochenek, J. (2014). Research on the ablation casting technology of aluminum alloys. Prace Instytutu Odlewnictwa, LIV(2). (in Polish).
[4] Ananthanarayanan, L., Samuel, F. & Gruzelski, J. (1992). Thermal analysis studies of the effect of cooling rate on the microstructure of 319 aluminium alloy. AFS Trans., 100, 383-391.
[5] Thompson, S., Cockcroft, S. & Wells, M. (2004). Advanced high metals casting development solidification of aluminium alloy A356. Materials Science and Technology, 20, 194-200.
[6] Jordon, L.W.J.B. (2011). Monotonic and cyclic characterization of five different casting process on a common magnesium alloy. Inte Natl, Manuf. Sci. Eng. Conf. MSE. Proceeding ASME.
[7] Jorstad, J. & Rasmussen, W. (1997). Aluminium science and technology. American Foundry Society. (368), 204-205.
[8] Weiss, D., Grassi, J., Schultz, B. & Rohagti, P. (2011). Ablation of hybrid metal matrix composites. Transactions of American Foundry Society. (119), 35-42.
[9] Taghipourian, M., Mohammadalihab, M., Boutorabic, S. & Mirdamadic, S. (2016). The effect of waterjet beginning time on the microstructure and mechanical properties of A356 aluminium alloy during the ablation casting process. Journal of Materials Processing Technology. 238, 89-95. DOI: https://doi.org/10.1016/j.jmatprotec.2016.05.004
[10] Rooy, E., Van Linden, J. (2015). ASM Metals Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. 2, 3330-3345.
[11] Bohlooli, V., Shabani Mahalli, M. & Boutorabi, S. (2013). Effect of ablation casting on microstructure and casting properties of A356 aluminium casting alloy. Acta Metallurgica Sininca (English letters). 26(1), 85-91.
[12] Grassi, J., Campbell, J. (2010). Ablation casting. A Technical paper, pp. 1-9.
[13] Jordon, L. (2011). Characterization of five different casting process on a common magnesium alloy. Inte Natl, Manuf. Sci. Eng. Conf. MSEC. Proceeding ASME.
[14] Wang, L., Lett, R. (2011). Microstructure characterization of magnesium control ARM castings. Shape Casting, pp. 215-222.
[15] Yadav , S., Gupta, N. (2017). Ablation casting process – an emerging process for non ferrous alloys. International Journal of Engineering, Technology, Science and Research. 4(4).
[16] Acura. (2015). Ablation Casting. Retrieved from: https://www.acura.com/performance/modals/ablation-casting
[17] Honda. (2015). New technical details next generation nsx revealed at SAE 2015 World Congress. Retrieved from: https://honda.did.pl/pl/samochody/nasza-firma/aktualnosci/450-nowe-szczegoly-techniczne-dot-kolejnej-generacji-modelu-nsx-ujawnione-na-sae-2015-world-congr.html
[18] Technology, F.M. (2015). Ablation-cast parts debut on new acura NSX. Retrieved from: https://www.foundrymag.com/meltpour/ablation-cast-parts-debut-new-acura-nsx
[19] Holtzer, M. (2002). Development directions of molding and core sand with inorganic binders in terms of reducing the negative impact on the environment. Archives of Foundry. 2(3), 50-56. (in Polish).
[20] Major-Gabryś K. (2016). Environmentally friendly foundry molding and core sand. Kraków: Archives of Foundry Engineering. (in Polish)
Go to article

Authors and Affiliations

S. Puzio
1
ORCID: ORCID
J. Kamińska
1
ORCID: ORCID
K. Major-Gabryś
2
ORCID: ORCID
M. Angrecki
1
ORCID: ORCID

  1. ŁUKASIEWICZ Research Network - Foundry Research Institute, Zakopianska 73, 30-418 Cracow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Mickiewicza 30, 30-059 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The manuscript presents the research results concerning the properties of concrete with non-clinker, low-emission binder composed of by-products from metallurgy and power industry: ground granulated blast furnace slag and fly ash from circular fluidized-bed combustion of brown coal. The binder was added in five proportions. The consistency and air content of the concrete mix were measured, as well as the temperature of the concrete mix during hardening. The compressive strength of the hardened concrete was investigated in three periods of samples’ curing: after 28, 90 and 360 days. Also the penetration depth of water under pressure and freeze and thaw resistance of concrete samples were investigated. The results confirm the possibility of application of slag-CFBC fly ash binder for mass concrete due to low temperature during hardening. The obtained results of the compressive strength and penetration depth of water under pressure reveal the influence of changing the proportion of the binder ingredients, as well as the sample damage during testing the freeze/thaw resistance. The CFBC fly ash-slag binder can be used for mass concrete, hydrotechnical concretes in particular, but excluding the zones exposed to frost.

Go to article

Authors and Affiliations

Agnieszka Machowska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of spent moulding sands taken from the mould in which the metal core cooling system - to increase the

cooling rate of the ladle casting - was applied, are presented in the hereby paper. The changes of the spent moulding sand at the casting

external side being the result of degradation and destruction processes of organic binder, were analysed in this publication. Since the

reclaimed material, obtained as a result of the mechanical reclamation of spent sands of the same type, is used as a grain matrix of the

moulding sand, the amount of a binder left from the previous technological cycle is essential for the sound castings production. On the

bases of investigations of the thermal analysis, ignition losses, dusts contents and pH values of the samples taken from the spent sand the

conditions under which the process of gases displacing in the casting mould was realised as well as factors limiting the efficient mould

degassing - were considered in this study. The possible reason of a periodical occurrence of an increased number of casting defects due to

changing gas volume emission, being the reason of the realised technological process, was indicated.

Go to article

Authors and Affiliations

M. Łucarz
Download PDF Download RIS Download Bibtex

Abstract

One of the purposes of the application of chemically modified inorganic binders is to improve knocking out properties and the related reclamability with previously used in foundry inorganic binder (water glass), which allowing the use of ecological binders for casting nonferrous metals. Good knocking out properties of the sands is directly related to the waste sands reclamability, which is a necessary condition of effective waste management. Reclamation of moulding and core sands is a fundamental and effective way to manage waste on site at the foundry, in accordance with the Environmental Guidelines. Therefore, studies of reclamation of waste moulding and core sands with new types of inorganic binders (developed within the framework of the project) were carried out. These studies allowed to determine the degree of recovery of useful, material, what the reclaimed sand is, and the degree of its use in the production process. The article presents these results of investigation. They are a part of broader research programme executed under the project POIG.01.01.02-00- 015/09 "Advanced materials and technologies".

Go to article

Authors and Affiliations

I. Izdebska-Szanda
M. Angrecki
A. Baliński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of analyzes of gases emitted during exposure to high temperature foundry molding sands, where binders are

organic resins. As a research tool has been used special gas chromatograph designed to identify odorous compounds including the group of

alkanes.

Go to article

Authors and Affiliations

J. Faber
K. Perszewska
Download PDF Download RIS Download Bibtex

Abstract

This publication describes research on the course of the process of cross-linking new BioCo polymer binders - in the form of water-based polymer compositions of poly(acrylic acid) or poly(sodium acrylate)/modified polysaccharide - using selected physical and chemical factors. It has been shown that the type of cross-linking factor used influences the strength parameters of the moulding sand. The crosslinking factors selected during basic research make it possible to obtain sand strengths similar to those of samples of sands bonded with commercial binders. Microwave radiation turned out to be the most effective cross-linking factor in a binder-matrix system. It was proven that adsorption in the microwave radiation field leads to the formation of polymer lattices with hydrogen bonds which play a major role in maintaining the formed cross-linked structures in the binder-matrix system. As a result, the process improves the strength parameters of the sand, whereas the hardening process in a microwave field significantly shortens the setting time.
Go to article

Authors and Affiliations

B. Grabowska
A. Bobrowski
K. Kaczmarska
E. Olejnik
Download PDF Download RIS Download Bibtex

Abstract

Fly-ash is a form of production waste produced as a result of the burning of coal for energy production. Millions of tonnes of this waste are produced worldwide every year; hence it is extremely important to dispose of it in a useful way, including through treating the initial raw material to obtain a material of higher quality. The aim of the present work is to determine the suitability of processed fly-ash from lignite for reinforcing (stabilizing) soils used in the building of road foundations and embankments. The results provide a method of recycling this waste while at the same time obtaining new materials and technologies for use in road building. This is an important issue both environmentally and in terms of the positive effect that processed fly-ash can have on the stability of road structures.

This article presents the results of experiments carried out using fly-ash produced from lignite at the P¹tnów Power Plant. This ash was first modified (activated) using a Wapeco magnetic activator, and then used to produce hydraulic binders (with the addition of cement) and soil-binder mixtures. These mixtures were made using natural soils from seven different deposits in the Lubuskie region (western Poland). They were stabilized using two hydraulic binders (strength ratings 3 MPa and 9 MPa) added in different amounts (6% and 8% relative to the mass of the soil). During the experiment, a determination was made of the increase in the strength of the analysed samples (after 14, 28, and 42 days) and the increase in the bearing ratio (immediately after consolidation and after 7 days).

Interpretation of the results of the experiment made it possible to assess the dynamics of the increase in compression strength and load-bearing capacity of various soils stabilized with hydraulic binders produced from lignite ash, and to indicate possibilities for the use of these materials.

The analysis showed that it is possible to use these binders for the stabilisation of soils, enabling soils formerly considered to have weak load-bearing capacity (clayey sand; clayey, sandy gravel; clays) to be classified as fully usable in road construction.

Go to article

Authors and Affiliations

Urszula Kołodziejczyk
Michał Ćwiąkała
Aleksander Widuch
Download PDF Download RIS Download Bibtex

Abstract

Each year, mine and mill operations generate enormousamounts of two waste types – fine-grained tailings andcoarse-grained waste rocks. Fine-grained tailings are either discharged in slurry form to surface tailings dams ordelivered in cementitious form to underground mine stopes as backfilling, while coarse-grained rocks are typicallystored by depositing as a dry material in large dumps. The engineering design of surface tailings dams orunderground mine stopes is often controlled by the high compressibility and low shear strength characteristics offine-grained tailings. Cemented paste backfill CPB indicating saturated, fine-grained backfills can undergo majorconsolidation settlement during early curing stages. Thus, a better understanding of the rate and magnitude of bothdifferential and total settlement of CPB cured under stressis essential for a proper backfill geotechnical design. Theconsolidation parameters of CPB can be determined from an improved lab setup called CUAPS (curing underapplied pressure system). This setup is capable of simulating the CPB placement and curing conditions, andmeasuring the consolidation parameters of CPB cured under effective stresses ranging between 0.5 and 400 kPa.In this study, a series of one-dimensional consolidation tests were conducted on CPB samples allowing forexamination of the effects of binder type and rate as well as curing time on the compression properties (e.g.,coefficient of consolidationcv, compression indexCc, and recompression indexCr) and the final geotechnicalindex properties (e.g., void ratioef, water contentwf, and degree of saturationSf). Results showed that as the bindercontent increases, the initial resistance to consolidation increases. Thecvvalue decreases over the course of timedue to evolution of the CPB microstructure generated by the hydration process.

Go to article

Authors and Affiliations

Erol Yilmaz
Tikou Belem
Mostafa Benzaazoua
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the issue of using moulding sands with a new two-component binder: furfuryl-resole resin – PCL polycaprolactone for the production of ductile iron heavy castings. The previous laboratory studies showed the possibility of using biodegradable materials as binders or parts of binders’ compositions for foundry moulding and core sands. The research proved that addition of new biodegradable PCL in the amount of 5% to the furfuryl-resole resin does not cause significant changes in moulding sand’s properties. The article presents research related to the production of ductile iron castings with the use of moulds with a modified composition, i.e. sands with furfuryl resole resin with and without PCL. Mechanical properties and microstructure of the casting surface layer at the metal/ mould interface are presented. The obtained test results indicate that the use of a biodegradable additive for making foundry moulds from moulding sand with a two-component binder does not deteriorate the properties of ductile iron castings.
Go to article

Authors and Affiliations

M. Hosadyna-Kondracka
1
ORCID: ORCID
K. Major-Gabryś
2
ORCID: ORCID
M. Warmuzek
1
ORCID: ORCID
M. Brůna
3
ORCID: ORCID

  1. Lukasiewicz Research Network – Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Krakow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Foundry of Non-ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  3. University of Žilina, Department of Technological Engineering, Faculty of Mechanical Engineering, Univerzitná 1, 010 26, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

Due to the observed increase in the amount of waste in landfills, there has been an increase in the demand for products made of biomaterials and the composition of biomaterials with petroleum-derived materials. The problem of waste disposal/management also applies to waste from the casting production process with the use of disposable casting moulds made with the use of organic binders (resins), as well as residues from the process of regeneration of moulding sands. A perspective solution is to add a biodegradable component to the moulding/core sand. The authors proposed the use of polycaprolactone (PCL), a polymer from the group of aliphatic polyesters, as an additive to a casting resin commonly used in practice. As part of this study, the effect of PCL addition on the (bio) degradation of dust obtained after the process of mechanical regeneration of moulding sands with organic binders was determined. The (bio) degradation process was studied in the environment reflecting the actual environmental conditions. As part of the article, dust samples before and after the duration of the (bio) degradation process were tested for weight loss by thermogravimetry (TG) and for losses on ignition (LOI).
Go to article

Bibliography

[1] Bastian, K.C., Alleman, J.E. (1996). Environmental bioassay evaluation of foundry waste residuals. Joint Transportation Research Program Technical Report Series, Purdue University, Purdue e-Pubs.
[2] Brenner, V. (2003). Biodegradace persistentních xenobiotik. Biodegradace. VI, 2003, 45-47.
[3] Sobków, D., Barton, J., Czaja, K., Sudoł, M. & Mazoń, B. (2014). Research on the resistance of materials to environmental factors. CHEMIK. 68(4), 347–354. (in Polish).
[4] Stachurek I. (2010). Biomedical systems of polyethylene oxide biodegradable in the aquatic environment. PhD thesis, Politechnika Krakowska. (in Polish).
[5] Eastman, J. (2000). Protein-based binder update: performance put to the test. Modern Casting. 90, 32-34.
[6] Kramářová, D., Brandštetr, J., Rusín, K. & Henzlová, P. (2003). Biogenic polymeric materials as binders for foundry molds and cores. Slévárenství. 60(2-3), 71-73. (in Czech).
[7] Grabowska, B., Holtzer, M., Dańko, R., Górny, M., Bobrowski, A. & Olejnik, E. (2013). New bioco binders containing biopolymers for foundry industry. Metalurgija. 52(1), 47-50.
[8] Grabowska, B., Szucki, M., Suchy, J.Sz., Eichholz, S., Hodor, K. (2013). Thermal degradation behavior of cellulose-based material for gating systems in iron casting production. Polimery. 58(1), 39-44.
[9] Major-Gabryś, K. (2016). Environmentally Friendly Foundry Moulding and Core Sands. Katowice-Gliwice, Archives of Foundry Engineering, ISBN 978-83-63605-24-7 (in Polish)
[10] Major-Gabryś, K. (2019). Environmentally Friendly Foundry Molding and Core Sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911.
[11] Holtzer, M. (2001). Management of waste and by-products in foundries. Kraków: University Scientific and Didactic Publishers, AGH, Poland. (in Polish).
[12] Skrzyński, M., Dańko, R. & Czapla, P. (2014). Regeneration of used moulding sand with furfuryl resin on a laboratory stand. Archives of Foundry Engineering. 14(spec.4), 111-114. (in Polish).
[13] Dańko, R., Łucarz, M. & Dańko, J. (2014). Mechanical and mechanical-thermal regeneration of the used core sand from the cold-box process. Archives of Foundry Engineering. 14(spec.4), 21-24. (in Polish).
[14] Rui, T., Liu, J. (2010). Study of modified furan resin binder system for large steel castings. In Proceedings of 69th World Foundry Congress, 16 - 20 October 2010. Hangzhou, China, World Foundry Organization (pp. 996 – 999).
[15] Dańko, R., Holtzer, M., Dańko, J. (2015). Characteristics of dust from mechanical reclamation of moulding sand with furan cold-setting resins – impact on environment. In Proceedings of the 2015 WFO International Forum on Moulding Materials and Casting Technologies, 25 – 28 September 2015. Changsha, China. WFO Moulding Materials Commission, Foundry Institution of Chinese Mechanical Engineering Society, Productivity Center of Foundry Industry of China (38-46).
[16] Iwamoto, A. & Tokiwa, Y. (1994). Enzymatic degradation of plastics containing polycaprolactone. Polymer Degradation and Stability. 45(2), 205-213.
[17] Eastmond, G.C. (2000). Poly(ε-caprolactone) blends. Advances in Polymer Science. 149, 59-222.
[18] Gutowska, A., Michniewicz, M., Ciechańska, D. & Szalczyńska, M. (2013). Methods of testing the biodegradability of biomass materials. CHEMIK. 67(10), 945-954. (in Polish).
[19] Major-Gabryś, K., Hosadyna-Kondracka, M., Skrzyński, M., Pastirčák, R. (2020). The quality of reclaim from moulding sand with furfuryl resin and PCL additive. The abstract paper at XXVI international conference of Polish, Czech and Slovak founders: 7-9.09.2020 r. Baranów Sandomierski, Poland.
[20] Major-Gabryś, K., Hosadyna-Kondracka, M. & Stachurek, I. (2020). Determination of mass loss in samples of post-regeneration dust from moulding sands with and without PCL subjected to biodegradation processes in a water environment. Journal of Applied Materials Engineering. 60(4), 121-129.
Go to article

Authors and Affiliations

K. Major-Gabryś
1
ORCID: ORCID
I. Stachurek
2
ORCID: ORCID
M. Hosadyna-Kondracka
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Mickiewicza 30, 30-059 Cracow, Poland
  2. ŁUKASIEWICZ Research Network - Foundry Research Institute, Zakopianska 73, 30-418 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

A thermo-insulating moulding sand with a binder made of aluminosilicate microspheres with organic binder was subjected to testing. The aim of the analysis was to determine selected technological properties of the developed compounds. Compressive strength, friability and gas permeability were determined. The binder content was changed within a range of 5÷20 wt% with a 5% step. The applied matrix is characterized by good thermo-insulating properties and a small size of grains, while synthetic organic binder has favourable functional properties, among which the most noteworthy are the extended life and setting time, good rheological properties as well as high resistance to chemical agents. The intended use of the compound is the casting of 3D CRS (Composite Reinforced Skeletons), which are characterized by a well-developed heat transfer surface area, good absorption of impact energy, low mass and a target thickness of connectors within a range of 1.5÷3 mm. The construction of 3D CRS castings is an original concept developed by the employees of the Department of Foundry Engineering at the Silesian University of Technology.

Go to article

Authors and Affiliations

K. Stec
Marian Cholewa
Ł. Kozakiewicz
Download PDF Download RIS Download Bibtex

Abstract

The research paper presents the results of testing the strength and technological properties of molding sand with gypsum binder, the bonding process proceeded: naturally or conventionally. The tests included mass containing (parts by weight): 78 pbw. Grudzeń-Las quartz sand, 22 pbw. plaster gypsum "Dolina Nidy” and 9 pbw. water. Measurements of compressive strength, shear, tensile and bending as well as permeability and looseness were carried out on standard cylindrical samples kept in the air for 1 - 96 hours or dried at 110 oC for 1 - 8 hours. The results of the analysis were analyzed in connection with the mass structure and construction binding bridges warp grains observed with a scanning microscope (SEM). The influence of drying intensity on the bonding process and related mass properties has been demonstrated, especially from the point of view of the possibility of selection and / or intensification of a specific curing method for use in the production of gypsum binger molds and cores.

Go to article

Authors and Affiliations

K. Granat
P. Paduchowicz
A. Dziedzic
M. Jamka
P. Biały
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of an investigation of the gases emission of moulding sands with an inorganic (geopolymer) binder with a relaxation additive, whose main task is to reduce the final (residual) strength and improves knocking-out properties of moulding sand. The moulding sand without a relaxation additive was the reference point. The research was carried out using in accordance with the procedure developed at the Faculty of Foundry Engineering of AGH - University of Science and Technology, on the patented stand for determining gas emissions. Quantification of BTEX compounds was performed involving gas chromatography method (GC).The study showed that the introduction of relaxation additive has no negative impact on gas emissions - both in terms of the total amount of gases generated, as well as emissions of BTEX compounds. Among the BTEX compounds, only benzene is emitted from the tested moulding sands. Its emission is associated with the introduction a small amount of an organic hardener from the group of esters.

Go to article

Authors and Affiliations

A. Bobrowski
S. Żymankowska-Kumon
K. Kaczmarska
D. Drożyński
B. Grabowska
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the possibilities of using alkali silicate based inorganic binders for automotive industry aluminium castings production. In recent years, inorganic binders are coming back to the foreground and their manufacturers are developing new processes, which are starting to progressively supersede organic binder systems. Paper describes known knowledge about classic alkali silicate binders with focus on hardening processes and on improving their technological properties. Trends from the area of development and the use new alkali silicate based inorganic binders are also shortly described. As part of the experimental work, specific methods of producing samples were developed, with the help of which properties such as disintegration were subsequently evaluated by measuring abrasion and residual strengths. Characteristics such as residual compressive strength or shear strength at different thermal loads were also evaluated. When comparing the laboratory results with the results of de-coring in real conditions, a high degree of correlation was achieved, which makes it possible to determine the optimal recipe/procedure for the production of geometrically complex cores.
Go to article

Bibliography

[1] Jelínek, P. (1996). Foundry molding mixtures Part II, Binder systems of molding mixtures. Ostrava.
[2] Lewandowski, J.L. (1997) Plastics for casting molds. Kraków: WYD AKAPIT.
[3] Bolibruchova, D., Kuris, M., Matejka, M. & Kasinska, J. (2022). Study of the influence of zirconium, titanium and strontium on the properties and microstructure of AlSi7Mg0.3Cu0.5 alloy. Materials. 15(10). 3709, 1-20. DOI: 10.3390/ma15103709.
[4] Köhler, E., Klimesch, C., Bechtle, S. & Stanchev, S. (2010). Cylinder head production with gravity die casting. MTZ Worldwide. 71, 38-41. DOI: 10.1007/BF03227043. https://doi.org/10.1007/BF03227043.
[5] Polzin, H. (2014.) Inorganic Binders for mould and core production in the foundry. (1st. ed.) Berlin: Schiele und Schön.
[6] Antoš, P., Burian, A. (2002). Water glass - production, structure, properties and uses. Silchem
[7] Izdebska-Szanda, I., Palma, A., Angrecki, M. & Żmudzińska, M. (2013). Environmentally friendly mould technology. Archives of Foundry Engineering. 13(3), 37-42. DOI: 10.2478/afe-2013-0055.
[8] Stechman, M., Różycka, D. & Baliński, A. (2003). Modification of aqueous sodium silicate solutions with morphoactive agents. Polish Journal of Chemical Technology. 5(3), 47-50. ISSN (1509-8117).
[9] Jelínek, P. & Škuta, R. (2003). Modified sodium silicates – a new alternative for inorganic foundry binders. Materials Enginering. 10(3), 283.
[10] Mashifana, T. & Sithole, T. (2020). Recovery of silicon dioxide from waste foundry sand and alkaline activation of desilicated foundry sand. Journal of Sustainable Metallurgy. 6, 700-714. DOI: 10.1007/s40831-020-00303-5.
[11] Vasková, I. & Bobok, L. (2002). Some knowledge of the water glass modification by the phosphate compounds. Acta Metallurgica Slovaca. 8(2), 161-167.
[12] Major-Gabryś, K., Dobosz, St.M., Jelínek, P., Jakubski, J. & Beňo, J. (2014). The measurement of high-temperature expansion as the standard of estimation the knock-out properties of moulding sands with hydrated sodium silicate. Archives of Metallurgy and Materials. 59(2), 739-742. DOI: 10.2478/amm-2014-0123.
[13] Obzina, T., Merta, V., Folta, M., Bradáč, J., Beňo, J. Novohradská, N., et al. (2021). Technological and quality aspects of the use of innovative inorganic binders in the production of castings. Metals. 11(11), 1779, 1-13. DOI: 10.3390/met11111779.
[14] Izdebska-Szanda, I., Baliński, A., Angrecki, M. & Palma, A. (2014). The effect of nanostructure modification of the silicate binder on its binding characteristics and functional properties. Archives of Metallurgy and Materials. 59(3), 1033-1036. DOI: 10.2478/amm-2014-0173.
[15] Major-Gabryś, K., Dobosz, St.M., Jakubski, J. (2010). Self-hardened moulding sand with hydrated sodium silicate and liquid ester hardeners. In K. Świątkowski (Eds.), Polish Metallurgy in 2006-2010. (328-335). Krakow: Committee of Metallurgy of the Polish Academy of Science.
[16] Izdebska-Szanda, I. & Baliński, A. (2011). New generation of ecological silicate binders. Procedia Engineering. 10, 887-893. DOI: 10.1016/j.proeng.2011.04.146.
[17] Baliński, A. (2009). About structure of hydrated sodium silicate as a binder of moulding sands. Krakow: Foundry Research Institute.
[18] Izdebska-Szanda, I. (2012). Moulding sand with silicate binder characterized by beneficial technological and ecological properties. M.Sc. dissertation, Foundry Research Institute, Poland.
[19] Izdebska-Szanda, I., Stefański, Z., Pezraski, F. & Szolc, M. (2009). Effect of additives promoting the formation of lustrous carbon on the knocking out properties of foundry sands with new inorganic binders. Archives of Foundry Engineering. 9(1), 17 – 20.
[20] Izdebska-Szanda, I., Szanda, M. & Matuszewski, S. (2011). Technological and ecological studies of moulding sands with new inorganic binders for casting of non-ferrous metal alloys. Archives of Foundry Engineering. 11(1), 43-48. ISSN (1897-3310).
[21] Zaretskiy, L. (2016). Modified silicate binders new developments and applications. International Journal of Metalcasting. 10(1), 88-99. DOI: 10.1007/s40962-015-0005-3.
[22] Josan, A., Pinca‐Bretotean, C. & Ratiuc, S. (2021). Management of the regeneration process of the moulding mixtures in order to reduce the costs of the foundry type industrial enterprises. Materials Today: Proceedings. 45, 4161-4165. DOI: 10.1016/j.matpr.2020.12.034
[23] Davis, J.R. (1998). Metals Handbook. Desk Edition (2nd ed.) Boca Raton:CRC Press.
Go to article

Authors and Affiliations

M. Bruna
1
ORCID: ORCID
I. Vasková
2
ORCID: ORCID
M. Medňanský
1
ORCID: ORCID
P. Delimanová
2
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Department of Technological Engineering, University of Zilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  2. Institute Of Metallurgy, Faculty of Materials, Metallurgy and Recycling, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

Stone mastic asphalt is a gap-graded mix and is usually related to its high bitumen content and its skeleton-like constitution. Although famous for its durability, high resistance to fatigue and rutting, issues such as bleeding and premature aging do occur in the mix since it has a high bitumen content and voids due to its gap-graded structure. In order to encounter these problems from affecting the mix, some instances such as adding additives, rejuvenators and stabilizers into the mixture has been implemented. Nowadays, nano materials are being used in the asphalt mixtures and nano titanium is being introduced as a modifier to the asphalt binder in order to improve the mechanical properties of the stone mastic asphalt mix. The related tests done in order to access the improvement are resilient modulus, dynamic creep, moisture susceptibility and binder drain down. The content of nano titanium used in this research are 1%, 2%, 3%, 4% and 5%. This study is done to assess the mechanical performance of stone mastic asphalt with nano titanium modified binder.
Go to article

Authors and Affiliations

Nur Syafiqah Shamimi Mohd Zali
1
ORCID: ORCID
Khairil Azman Masri
1
ORCID: ORCID
Ramadhansyah Putra Jaya
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
2
ORCID: ORCID
Muzamir Hasan
1
ORCID: ORCID
Mohd Rosli Mohd Hasan
3
ORCID: ORCID
Bartłomiej Jeż
4
ORCID: ORCID
Marcin Nabiałek
4
ORCID: ORCID
Marek Sroka
5
ORCID: ORCID
Paweł Pietrusiewicz
4
ORCID: ORCID

  1. Department of Civil Engineering, College of Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
  2. Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  3. School of Civil Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
  4. Department of Physics, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 42-201 Czestochowa, Poland
  5. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian 21 University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper provides an overview of selected scientific articles presenting research carried out in recent years on methods for producing autoclaved aerated concrete. Traditional technologies are briefly presented, together with innovative solutions for the production of low-density and ultra-lowdensity materials. In addition to the presentation of the manufacturing methods themselves, the results of research into the properties of the autoclaved aerated concrete obtained and their dependence on the technology used are also presented. A subjective selection and review of articles covering research into the thermal conductivity of concrete, the technological factors influencing them and the ways in which they can be shaped was also carried out. A significant number of the cited articles do not function in the world scientific circulation due to the language barrier (they are mainly in Ukrainian). In the meantime, they contain interesting research results which can inspire further research into the issues discussed concerning the production technology and the thermal and strength properties of autoclaved aerated concrete, with particular emphasis on lightweight and ultra-lightweight concrete.
Go to article

Authors and Affiliations

Yaroslav Yakymechko
1
ORCID: ORCID
Roman Jaskulski
2
ORCID: ORCID
Maciej Banach
2
ORCID: ORCID
Piotr Perłowski
2
ORCID: ORCID

  1. Lviv Polytechnic National University, Institute of Chemistry and Chemical Technologies, Bandera str. 13, Lviv, Ukraine
  2. Warsaw University of Technology, Faculty of Civil Engineering Mechanics and Petrochemistry, ul. Łukasiewicza 17, 09-400 Płock, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of research which is part of studies carried out under the project POIG.01.01.02-00-015/09 "Advanced Materials and Technologies", one of the aims of which is to introduce new, environment-friendly, inorganic binders to the production of castings from non-ferrous metals. The paper presents the results of research on the management of waste moulding sands prepared according to the new technology, including their multiple reclamation and management of post-reclamation waste. Studies of multiple reclamation are a continuation of the preliminary research described earlier. The programme of the studies described in this paper also included validation of the results under industrial conditions.
Go to article

Authors and Affiliations

I. Izdebska-Szanda
M. Angrecki
A. Palma
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of thermal reclamation of spent moulding sands originating from an aluminum alloy foundry plant are

presented in this paper. Spent sands were crushed by using two methods. Mechanical fragmentation of spent sand chunks was realized in

the vibratory reclaimer REGMAS. The crushing process in the mechanical device was performed either with or without additional

crushing-grinding elements. The reclaimed material obtained in this way was subjected to thermal reclamations at two different

temperatures. It was found that a significant binder gathering on grain surfaces favors its spontaneous burning, even in the case when

a temperature lower than required for the efficient thermal reclamation of furan binders is applied in the thermal reclaimer. The burning

process, initiated by gas burners in the reclaimer chamber, generates favorable conditions for self-burning (at a determined amount of

organic binders on grain surfaces). This process is spontaneously sustained and decreases the demand for gas. However, due to the

significant amount of binder, this process is longer than in the case of reclaiming moulding sand prepared with fresh components.

Go to article

Authors and Affiliations

M. Łucarz
M. Dereń
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of spent moulding sands taken from the mould at various distances from the surface of the produced casting,

are presented in the paper. The casting mould was made with an application of the cooling system of the metal core in order to increase the

cooling rate of the ladle casting. As temperature measurements in the mould indicated the heat flow from the metal did not create

conditions for the complete burning of a moulding sand. The analysis was performed to find out changes of spent moulding sands caused

by degradation and destruction processes of organic binders. Conditions occurring in the casting mould were discussed on the bases of

testing: ignition losses, dusts contents, pH reactions and the surface morphology of the moulding sand samples. Factors limiting the

effective mould degassing were pointed out. Operations, possible for realization, which can limit the reasons of a periodical occurrence of

increased amounts of casting defects due to changing gas evolution rates being the result of the technological process, were also indicated.

Go to article

Authors and Affiliations

M. Łucarz
Download PDF Download RIS Download Bibtex

Abstract

The investigation results of the kinetics of binding ceramic moulds, in dependence on the solid phase content in the liquid ceramic slurries being 67, 68 and 69% - respectively, made on the basis of the aqueous binding agents Ludox AM and SK. The ultrasonic method was used for assessing the kinetics of strengthening of the multilayer ceramic mould. Due to this method, it is possible to determine the ceramic mould strength at individual stages of its production. Currently self-supporting moulds, which must have the relevant strength during pouring with liquid metal, are mainly produced. A few various factors influence this mould strength. One of them is the ceramic slurry viscosity, which influences a thickness of individual layers deposited on the wax model in the investment casting technology. Depositing of layers causes increasing the total mould thickness. Therefore, it is important to determine the drying time of each deposited layer in order to prevent the mould cracking due to insufficient drying of layers and thus the weakening of the multilayer mould structure.

Go to article

Authors and Affiliations

J. Kolczyk
Ł. Jamrozowicz
J. Zych

This page uses 'cookies'. Learn more