Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The current research focuses on the implementation of the fuzzy logic approach for the prediction of base pressure as a function of the input parameters. The relationship of base pressure (β ) with input parameters, namely, Mach number (M), nozzle pressure ratio (η), area ratio (α), length to diameter ratio (ξ ), and jet control (ϑ ) is analyzed. The precise fuzzy modeling approach based on Takagi and Sugeno’s fuzzy system has been used along with linear and non-linear type membership functions (MFs), to evaluate the effectiveness of the developed model. Additionally, the generated models were tested with 20 test cases that were different from the training data. The proposed fuzzy logic method removes the requirement for several trials to determine the most critical input parameters. This will expedite and minimize the expense of experiments. The findings indicate that the developed model can generate accurate predictions
Go to article

Authors and Affiliations

Jaimon D. Quadros
1
ORCID: ORCID
Suhas P.
2
Sher A. Khan
3
ORCID: ORCID
Abdul Aabid
4
ORCID: ORCID
Muneer Baig
4
Yakub I. Mogul
5

  1. Fluids Group, School of Mechanical Engineering, Istanbul Technical University, Gümüs¸suyu, 34437 Istanbul
  2. Department of Mechanical Engineering, Sahyadri College of Engineering and Management, Mangaluru 575007, Karnataka, India
  3. Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100, Selangor, Malaysia
  4. Department of Engineering Management, College of Engineering, Prince Sultan University, 66833, Riyadh 11586, Saudi Arabia
  5. National Centre for Motorsport Engineering, University of Bolton, Bolton, BL3 5AB, UK
Download PDF Download RIS Download Bibtex

Abstract

The paper present the determination of the state parameters of natural gas at the pipeline inlet based on knowledge of the pressure and temperature at the receiving point. Natural gas transport will be carried out through an offshore section of a transmission pipeline. The equations of the Fanno flow model will be used to describe the thermodynamic parameters of the gas in the flow lines. The mathematical equations of the flow mentioned above models have been derived from an analysis of the mass, energy and momentum balance equations. They also take into account the viscous friction forces in the transported gas. Based on the carried out calculations, changes in the Mach number, pressure and velocity of methane transported along the analysed pipeline were determined. In addition, the total entropy gain in the analysed methane flow was determined. The novelty of the calculations presented is the use of the Fanno flow model, which considers a realistic adiabatic gas flow. This is in contrast to the isothermal flow model, which assumes an unchanging temperature of the transported gas. In the case under consideration, the adopting model was possible because of the similar temperature values of the gas flowing in the pipeline and the corresponding temperature values of the surrounding seawater. The fundamental advantage of the Fanno flow model is that it satisfies the mass balance of the flowing gas in each cross-section. Thus, the product of the velocity and density of the gas in a pipeline of constant diameter assumes a constant value.
Go to article

Authors and Affiliations

Kazimierz Rup
1
Tomasz Sobota
2

  1. Rup, Kazimierz: Cracow University of Technology, Faculty of Environmental Engineeringand Energy, Warszawska 24, 31-155 Kraków, Poland
  2. Cracow University of Technology, Faculty of Environmental Engineeringand Energy, Warszawska 24, 31-155 Kraków, Poland

This page uses 'cookies'. Learn more