Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Hybrid nanofluids is obtained by dispersing more than one nanoparticle into a base fluid. The work is concerned with a detailed numerical investigation of the thermal efficiency and hydraulic performance of hybrid nanofluids for circular jet impinges on a round plate. For this paper, a metal (Ag), a metal oxides (Al2O3) and a metal carbides (SiC) nanoparticle and their water based hybrid nanofluids are considered to analyse numerically with varying significant dimensionless parameters, i.e., the jet-to-plate spacing ratio, Reynolds number and volume fraction of nanoparticles. The results demonstrated that the efficiency of heat transfer of all nanofluids is increased by the addition of nanoparticle to the dispersed in water at constant Reynolds number. Moreover, the results illustrate that heat transfer efficacy and pumping power penalty both increased as jet-to-plate spacing ratio reduced. The jet-to-plate spacing ratio equal to 4 is the best as the percentage enhance heat transfer is maximum in this situation. Since both the heat transfer effect and pumping penalty increase using hybrid nanofluids, thermal performance factor increases or decreases depends on nanoparticles of nanofluids. It is evident that the analysis of these hybrid nanofluids will consider both the increase in heat efficiency and the pumping capacity. The best flow behaviour is achieved for SiC–Al2O3 hybrid nanofluids. New merit number is introduced for additional clarification.
Go to article

Bibliography

[1] Sun B., Zhang Y., Yang D., Li H.: Experimental study on heat transfer characteristics of hybrid nanofluid impinging jets. Appl. Therm. Eng. 151(2019), 556–566
[2] Vafaei M., Afrand M., Sina N., Kalbasi R., Sourani F., Teimouri H.: Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Physica E (Lowdim. Sys. Nanostruct.) 85(2017), 90–96.
[3] Kumar D.D., Arasu A.V.: A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew. Sustain. Energy Rev. 81(2017), 2, 1669–1689.
[4] Minea A.A.: Challenges in hybrid nanofluids behavior in turbulent flow: recent research and numerical comparison. Renew Sustain. Energy Rev. 71(2016), 426–434.
[5] Sidik N.A.C., Adamu I.M., Jamil M.M., Kefayati G.H.R., Mamat R., Najafi G.: Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. Int. Commun. Heat Mass 78(2016), 68–79.
[6] Nabil M.F., Azmi W.H., Hamid K.A., Zawawi N.N.M., Priyandoko G., Mamat R.: Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: a comprehensive review on performance. Int. Commun. Heat Mass 83(2017), 30–39.
[7] Hamzah M.H., Sidik N.A.C, Ken T.L., Mamat R., Najafi G.: Factors affecting the performance of hybrid nanofluids: a comprehensive review. Int. J. Heat Mass Tran. 115(2017), 12, 630–46.
[8] Khodadadi H., Aghakhani S., Majd H., Kalbasi R., Wongwises S., Afrand M.: A comprehensive review on rheological behavior of mono and hybrid nanofluids: effective parameters and predictive correlations. Int. J. Heat Mass Tran. 127(2018), B, 997–1012.
[9] Kumar D.D., Arasu A.V.: A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew. Sust. Energ. Rev. 81(2018), 1669–89.
[10] Sidik N.A.C., Jamil M.M., Japar W.M., Adamu I.M.: A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sust. Energ. Rev. 80 (2017), 1112–1122.
[11] Madhesh D., Kalaiselvam S.: Experimental analysis of hybrid nanofluid as a coolant. Procedia Eng. 97(2014), 1667–1675.
[12] Suresh S., Venkitaraj K.P, Selvakumar P., Chandrasekar M.: Synthesis of Al2O3—Cu/water hybrid nanofluids using two step method and its thermophysical properties. Colloids Surface A Physicochem. Eng. Asp. 388(2011), 41–48.
[13] Jana S., Khojin A.S.,.Zhong W.H: Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim. Acta 462(2007), 1–2, 45–55.
[14] Abbasi S.M., Nemati A., Rashidi A., Arzani K.: The effect of functionalization method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram. Int. 39(2013), 3885–3891.
[15] Nine M.J., Munkhbayar B., Rahman M.S., Chung H., Jeong H.: Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization. Mater. Chem. Phys. 141(2013), 636–642.
[16] Chen L.F., Cheng M., Yang D.J., Yang L.: Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. Appl. Mech. Mater. 548–549(2014), 118–123.
[17] Sundar L.S., Singh M.K., Sousa A.C.M.: Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass 52(2014), 73–83.
[18] Baby T.T., Ramaprabhu S.: Surfactant free magnetic nanofluids based on coreshell type nanoparticle decorated multiwalled carbon nanotubes. J Appl. Phys. 110(2011), 064325–31.
[19] Esfe M.H., Abbasian A.A., Rezaie M., Yan W.M., Karimipour A.: Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass 66(2015), 189–195.
[20] Das P.K.: A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J. Mol. Liq. 240(2017), 420–446.
[21] Soltani S., Kasaeian A., Sarrafha H. et al.: An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Sol. Energy 155(2017) 1033–1043.
[22] Leong K.Y., Ahmad K.Z., Ong H.C., Ghazali M.J., Baharum A.: Synthesis and thermal conductivity characteristic of hybrid nanofluids — A review. Renew. Sust. Energ. Rev. 75(2017), 868–878.
[23] Nimmagadda R., Venkatasubbaiah K.: Conjugate heat transfer analysis of microchannel using novel hybrid nanofluids (Al2O3 + Ag/Water). Eur. J. Mech. B. Fluids 52 (2015), 19–27.
[24] Sajid M.U., Ali H.M.: Thermal conductivity of hybrid nanofluids: a critical review. Int. J. Heat Mass Tran. 26 (2018), 211–234.
[25] Allahyar H.R., Hormozi F., Zarenezhad B.: Experimental investigation on the thermal performance of a coiled heat exchanger using a new hybrid nanofluid. Exp. Therm. Fluid Sci. 76 (2016), 324–329.
[26] Olatomide G.F., Adebimpe A.A., Ayodeji O.S., David O.O., Johnson A.O., Francis I.I., Fatai A.B.: Numerical investigation and sensitivity analysis of turbulent heat transfer and pressure drop ofAl2O3/H2O nanofluid in straight pipe using response surface methodology. Arch. Thermodyn. 41(2020), 1, 3–30
[27] Sarkar J., Ghosh P., Adil A.: A review on hybrid nanofluids: recent research, development and applications. Renew. Sust. Energ. Rev. 43 (2015), 164–177.
[28] Moghadassi A., Ghomi E., Parvizian F.: A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int. J. Therm. Sci. 92 (2015), 50–57.
[29] Esfe M.H., Rostamian S.H., Alirezaie A.: An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management. Appl. Therm. Eng. 111(2016), 1202–1210.
[30] Suresh S., Venkitaraj K.P., Selvakumar P. et al.: Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid Sci. 38 (2012), 54–60.
[31] Esfe M.H., Esfandeh S., Saedodin S. et al.: Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl. Therm. Eng. 125 (2017), 673– 685.
[32] Munkhbayar B., Tanshen M.R., Jeoun J. et al.: Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram. Int. 39 (2013), 6, 6415–6425.
[33] Minea A.A.: Pumping power and heat transfer efficiency evaluation on Al2O3, TiO2 and SiO2 single and hybrid water-based nanofluids for energy application. J. Therm. Anal. Calorim. 139 (2020), 2, 1171–1181.
[34] Manninen M., Veikko T., Sirpa K.: On the mixture model for multiphase flow. VTT, Espoo 1996, 3–67.
[35] Schiller L., Naumann Z.: A Drag Coefficient Correlation. Zeitschrift des Vereins Deutscher Ingenieure 77 (1935), 318–320.
[36] Sagot B., Antonini G., Christgen A., Buron F.: Jet impingement heat transfer on a flat plate at a constant wall temperature. Int. J. Therm. Sci. 47 (2008), 12, 1610– 1619.
[37] Menter F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(1994), 8, 1598–1605.
[38] Krieger I.M.,. Dougherty T.J.: A mechanism for non-Newtonian flow in suspension of 528 rigid spheres. J. Trans. Soc. Rheol. 3(1956), 37–152
[39] Maxwell J.C.: A Treastise on Electricity and Magnetism (2nd Edn.). Oxford Univer. Press, Cambridge 1881.
[40] ANSYS Inc. ANSYS Fluent 15.0 UDF Manual, Canonsburg, PA: ANSYS Inc, 2013.
[41] Gherasim I., Roy G., Nguyen, C.T., Vo-Ngoc, D.: Heat transfer enhancement and pumping power in confined radial flows using nanoparticle suspensions (nanofluids). Int. J. Therm. Sci. 50(2011), 3, 369–377.
[42] Maradiya C., Vadher J., Agarwal R.: The heat transfer enhancement techniques and their Thermal Performance Factor. Beni-Suef Uni. J. Basic Appl. Sci. 7(2018), 1, 1–21.
Go to article

Authors and Affiliations

Abanti Datta
1
Pabitra Halder
1

  1. Indian Institute of Engineering Science and Technology, Shibpur PO: Botanic Garden, Howrah-711103, West Bengal, India
Download PDF Download RIS Download Bibtex

Abstract

Limiting energy resources has led researchers to find new innovative ways to enhance heat exchanging devices thermal performance in power generating systems. Thus, the present paper analyzes passive techniques of enhancing the thermal performance of a single tube heat exchanger. Experimental and numerical investigation on heat transfer enhancement using aserrated circular ring with twisted tape is carried out. The work incorporates the determination of Nusselt number, friction factor, thermal performance factor for serrated circular ring with twisted tape with variation in diameter ratio (0.8 and 0.85) and pitch ratio (2 and 3). Air is used as a working fluid with Reynolds number 6000–24000. The experiment is conducted by providing a constant wall heat flux of 1000 W/m2 to the system and thereby taking results at a steady state. The experimental and computational findings obtained for the smooth tube case are compared with the standard correlations of Dittus–Boelter and Blasius. Based on experimental and numerical investigation, there is 5.16 times augmentation in heat transfer and 3.05 times improvement in thermal performance factor over the smooth tube heat exchanger. In addition, the study of entropy generation rate for every geometrical parameter has been conducted, and their influence on the system’s thermal behaviour is presented. The results obtained in the present study may help the researchers of the same research area to find similar inserts and new ways of enhancing the thermal performance of heat exchangers.
Go to article

Bibliography

[1] Kumar A., Maithani R., Suri A.: Numerical and experimental investigation of enhancement of heat transfer in dimpled rib heat exchanger tube. Heat Mass Transfer 53(2017), 3501–3516.
[2] Xie S., Liang Z., Zhang L., Wang Y.: A numerical study on heat transfer enhancement and flow structure in enhanced tube with cross ellipsoidal dimples. Int. J. Heat Mass Tran. 125(2018), 434–444.
[3] Abu-Khader M.: Further understanding of twisted tape effects as tube insert for heat transfer enhancement. Heat Mass Transfer 43(2006), 123–134.
[4] Karagoz S., Afshari F., Yildirim O., Comakli O.: Experimental and numerical investigation of the cylindrical blade tube inserts effect on the heat transfer enhancement in the horizontal pipe exchangers. Heat Mass Transfer 53(2017), 2769–2784.
[5] Tu W., Tang Y., Hu J.,Wang Q., Lu L.: Heat transfer and friction characteristics of laminar flow through a circular tube with small pipe inserts. Int. J. Therm. Sci. 96(2015), 94–101.
[6] Xin F., Liu Z., Zheng N., Liu P., Liu W.: Numerical study on flow characteristics and heat transfer enhancement of oscillatory flow in a spirally corrugated tube. Int. J. Heat Mass Tran. 127(2018), 402–413.
[7] Zheng N., Liu P., Wang X., Shan F., Liu Z., Liu W.: Numerical simulation and optimization of heat transfer enhancement in a heat exchanger tube fitted with vortex rod inserts. Appl. Therm. Eng. 123(2017), 471–484.
[8] Yuxiang H., Xianhe D., Lianshan Z.: 3Dnumerical study on compound heat transfer enhancement of converging-diverging tubes equipped with twin twisted tapes. Chinese J. Chem. Eng. 20(2012), 589–601.
[9] Akcayoglu A.: Flow past confined delta-wing type vortex generators. Exp. Therm. Fluid Sci. 35(2011), 112–120.
[10] Eiamsa-ard S., Promvonge P.: Influence of double-sided delta-wing tape insert with alternate-axes on flow and heat transfer characteristics in a heat exchanger tube, fluid flow and transport phenomena. Chinese J. Chem. Eng. 19(2011), 410- 423.
[11] Khoshvaght-Aliabadi M., Sartipzadeh O., Alizadeh A.: An experimental study on vortex-generator insert with different arrangements of delta-winglets. Energy 82(2015), 629–639.
[12] Promvonge P., Khanoknaiyakarn C., Kwankaomeng S., Thianpong C.: Thermal behavior in solar air heater channel fitted with combined rib and deltawinglet. Int. Commun. Heat Mass Tran. 38(2011), 749–756.
[13] Singh S., Pandey L., Kharkwal H., Sah H.: Augmentation of thermal performance of heat exchanger using elliptical and circular insert with vertical twisted tape. Exp. Heat Transfer 33 (2019), 6, 510–525.
[14] Vashishtha C., Patil A., Kumar M.: Experimental investigation of heat transfer and pressure drop in a circular tube with multiple inserts. Appl. Therm. Eng. 96(2016), 117–129.
[15] Alzahrani S., Usman S.: CFD simulations of the effect of in-tube twisted tape design on heat transfer and pressure drop in natural circulation. Therm. Sci. Eng. Prog. 11(2019), 325–333.
[16] Bhuiya M.M.K., Sayema A.S.M., Islam M, Chowdhury M.S.U., Shahabuddin M.: Performance assessment in a heat exchanger tube fitted with double counter twisted tape inserts. Int. Commun. Heat Mass Tran. 50(2014), 25–33.
[17] Suri A., Kumar A., Maithani R.: Heat transfer enhancement of heat exchanger tube with multiple square perforated twisted tape inserts. Exp. Invest. Corr. Dev. 116(2017) 76–96.
[18] Nakhchi M.E., Esfahani J.A.: Performance intensification of turbulent flow through heat exchanger tube using double V-cut twisted tape inserts. Chem. Eng. Process. Process Intensific. 141(2019), 107533.
[19] Nakhchi M.E., Esfahani J.A.: Numerical investigation of rectangular-cut twisted tape insert on performance improvement of heat exchangers. Int. J. Therm. Sci. 138(2019), 75–83.
[20] Hong Y., Du J., Li Q., Xu T., Li W.: Thermal-hydraulic performances in multiple twisted tapes inserted sinusoidal rib tube heat exchangers for exhaust gas heat recovery applications. Energ. Convers. Manage. 185(2019), 271–290.
[21] Bas H., Ozceyhan V.: Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall. Exp. Therm. Fluid Sci. 41(2012), 51–58.
[22] Sarviya R.M., Fuskele V.: Heat transfer and pressure drop in a circular tube fitted with twisted tape insert having continuous cut edges. J. Energ. Stor. 19(2018), 10–14.
[23] Reddy V., Kumar S., Gugulothu R., Anuja K., Rao V.: CFD analysis of a helically coiled tube in tube heat exchanger. Sci. Direct Mater. Today Proc. 4(2017), 2341–2349.
[24] Keklikcioglu O., Ozceyhan V.: Experimental investigation on heat transfer enhancement in a circular tube with equilateral triangle cross sectional coiled wire insert. Appl. Therm. Eng. 131(2018), 686–695.
[25] Gholamalizadeh E., Hosseini E., Jamanani M., Amiri A., Sare A., Alimoradi A.: Study of intensification of the heat transfer in helically coiled tube heat exchanger via coiled wire inserts. Int. J. Therm. Sci. 141(2019), 72–83.
[26] Sheikholeslami M., Gorji-Bandpy M., Ganji D.: Effect of discontinuous helical turbulators on heat transfer characteristics of double pipe water to air heat exchanger. Energ. Convers. Manage 118(2016), 75–87.
[27] Eiamsa-ard S., Nivesrangsan P., Chokphoemphun S., Promvonge P.: Influence of combined non-uniform wire coil and twisted tape inserts on thermal performance characteristics. Int. Commun. Heat Mass Tran. 37(2010), 850–856.
[28] Kongkaitpaiboon V., Nanan K., Eiamsa-ard S.: Experimental investigation of convective heat transfer and pressure loss in a round tube fitted with circular-ring turbulators. Int. Commun. Heat Mass Tran. 37(2010), 568–574.
[29] Kumar A., Chamoli S., Kumar M., Singh S.: Experimental investigation on thermal performance and fluid flow characteristics in circular cylindrical tube with circular perforated ring inserts. Exp. Therm. Fluid Sci. 79(2016), 168–174.
[30] Singh S., Negi J., Bisht S., Sah H.: Thermal performance and frictional losses study of solid hollow circular disc with rectangular wings in circular tube. Heat Mass Tran. 55(2019), 2975–2986.
[31] Pandey L., Singh S.: Numerical analysis for heat transfer augmentation in circular tube heat exchanger using triangular perforated Y-shape insert. Fluids 6(2021), 7, 247.
[32] Zong Y., Bai D., Zhou M., Zhao L.: Numerical studies on heat transfer enhancement by hollow-cross disk for cracking coils. Chem. Eng. Process. Process Intensific. 135(2019), 82–92.
[33] Bartwal A., Gautam A., Kumar M., Mamgrulkar C., Chamoli S.: Thermal performance intensification of a circular heat exchanger tube integrated with compound circular ring-metal wire net inserts. Chem. Eng. Process. Process Intensific. 124(2018), 50–70.
[34] Nakchi M.E, Esfahani J.A.: Numerical investigation of different geometrical parameters of perforated conical rings on flow structure and heat transfer in heat exchanger. Appl. Therm. Eng. 156(2019), 494–505.
[35] Gururatana S., Skullong S.: Experimental investigation of heat transfer in a tube heat exchanger with airfoil-shaped insert. Case Stud. Therm. Eng. 14(2019).
[36] Skullong S., Promvonge P., Jayranaiwachira N., Thianpong C.: Experimental and numerical heat transfer investigation in a tubular heat exchanger with delta-wing tape inserts. Chem. Eng. Process. 109(2016), 164–177.
[37] Navickaite K., Cattani L., Bahl C., Engelbrecht K.: Elliptical double corrugated tubes for enhanced heat transfer. Int. J. Heat Mass Tran. 128(2019) 363–377.
[38] Andrzejczyk R., Muszynski T., Gosz M.: Experimental investigations on heat transfer enhancement in shell coil heat exchanger with variable baffles geometry. Chem. Eng. Process. 132(2018), 114–126.
[39] Hameed V., Hussein M.: Effect of new type of enhancement on inside and outside surface of the tube side in single pass heat Exchanger. Appl. Therm. Eng. 122(2017), 484–491.
[40] Nagarajan P.K., Sivashanmugam P.: Heat transfer enhancement studies in a circular tube fitted with right-left helical inserts with spacer. World Ac. Sci., Eng. Technol., Int. J. Mech. Mechatron. Eng. 5(2011), 10, 2091–2095.
[41] Promvonge P., Koolnapadol N., Pimsarn M., Thianpong C.: Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings. Appl. Therm. Eng. 62(2014), 285–292.
[42] Sripattanapipat S., Tamna S., Jayranaiwachira N., Promvonge P.: Numerical heat transfer investigation in a heat exchanger tube with hexagonal conical-ring inserts. Energy Proced. 100(2016), 522–525.
[43] Liang Y., Liu P., Zheng N., Shan F., Liu Z., Liu W.: Numerical investigation of heat transfer and flow characteristics of laminar flow in a tube with center-tapered wavy-tape insert. Appl. Therm. Eng. 148(2019), 557–567.
[44] Skullong S., Promvonge P., Thianpong C., Jayranaiwachira N., Pimsarn M.: Thermal performance of heat exchanger tube inserted with curved-winglet tapes. Appl. Therm. Eng. 129(2018), 1197–1211.
[45] Yaningsih I., Wijayanta A., Miyazaki T., Koyama S.: Thermal hydraulic characteristics of turbulent single-phase flow in an enhanced tube using louvered strip insert with various slant angles. Int. J. Therm. Sci. 134(2018), 355–362.
[46] Modi A., Kalel N., Rathod M.: Thermal performance augmentation of finand- tube heat exchanger using rectangular winglet vortex generators having circular punched holes. Int. J. Heat Mass Tran. 158(2020), 119724.
[47] Webb R.L., Kim N.H.: Principles of Enhanced Heat Transfer (2nd Edn.). Taylor Francis, New York 2005. [48] Klein S.J., McClintock A.: The description of uncertainties in a single sample experiments. Mech. Eng. 75(1953), 3–8.
[49] Kumar A., Chamoli S., Kumar M.: Experimental investigation on thermal performance and fluid flow characteristics in heat exchanger tube with solid hollow circular disk inserts. Appl. Therm. Eng. 100(2016), 227–236.
[50] Keklikcioglu O., Ozceyhan V.: Entropy generation analysis for a circular tube with equilateral triangle cross sectioned coiled-wire inserts. Energy 139(2017), 65–75.
[51] Singh S., Kharkwal H., Gautam A., Pandey A.: CFD analysis for thermohydraulic properties in a tubular heat exchanger using curved circular rings. J. Therm. Anal. Calorim. 141(2020), 2211–2218.
[52] Siddique W., Raheem A., Aqeel M., Qayyum S., Salamen T., Waheed K., Qureshi K.: Evaluation of thermal performance factor for solar airheaters with artificially roughened channels. Arch. Mech. Eng. 68(2021), 195–225.
[53] Menni Y., Chamkha A., Zidani C., Benyoucef B.: Analysis of thermo-hydraulic performanceof a solar air heater tube with modern obstacles. Arch. Thermodyn. 41(2020), 3, 33–56.
[54] https://www.ansys.com/products/fluids/ansys-fluent
[55] https://idoc.pub/queue/ansys-fluent-users-guide-d49o6jd0g649
[56] Benlekkam M., Nehar D.: Hybrid nano improved phase change material for latent thermal energy storage system: Numerical study. Arch. Mech. Eng. 69(2022), 77–98.
Go to article

Authors and Affiliations

Himanshi Kharkwal
1
Satyendra Singh
1

  1. Department of Mechanical Engineering, B.T. Kumaon Institute of Technology, Dwarahat-263653 (Almora), Uttarakhand, India
Download PDF Download RIS Download Bibtex

Abstract

Heat transfer augmentation has become the utmost industrial desire. Turbulence promoters seems to be a better option for better heat transfer but at the expense of enormous pressure drop. In the current study, experimental optimization of heat transfer and pressure drop in various configurations of ribbed and corrugated surfaces on the bottom wall of the Solar Air Heater channel, having aspect ratio of 26:5 was performed. The results were evaluated in terms of enhancement in heat transfer (Nu/Nu s), friction factor ratio (f/f s) and thermal performance factor ( η). Three different cases and nine configurations with a pitch to rib/corrugation height ratio of 4.0 were studied. Case A consists of a smooth, continuous square rib, inline and staggered broken ribs. Case B comprises 30°, 45°, 60° and 90° trapezoidal corrugated geometries while Case C is the comparison of smooth, wavy corrugated and the best configurations of cases A and B. The results show that rectangular duct with staggered broken ribs and trapezoidal corrugation at 45° are the best configurations for case A and B, respectively. The 45° corrugated configuration is the best one amongst all, with values of 1.53, 1.5 and 1.33% for Nu/Nu s, f/f s and η respectively.
Go to article

Bibliography

[1] W.A. Hermann. Quantifying global exergy resources. Energy, 31(12):1685–1702, 2006. doi: 10.1016/j.energy.2005.09.006.
[2] T. Alam, R.P. Saini, and J.S. Saini. Use of turbulators for heat transfer augmentation in an air duct – A review. Renewable Energy, 62:689–715, 2014. doi: 10.1016/j.renene.2013.08.024.
[3] A. Kumar, R.P. Saini, and J.S. Saini. Heat and fluid flow characteristics of roughened solar air heater ducts – A review. Renewable Energy, 47:77–94, 2012. doi: 10.1016/j.renene.2012.04.001.
[4] D. Kumar and L. Prasad. Heat transfer augmentation of various roughness geometry used in solar air heaters. International Journal of Mechanical Engineering and Technology, 8(12):491–508, 2017.
[5] R. Prakash, A.K. Singh, and P.A. Verma. The effect of roughness geometries on heat transfer enhancement in solar air heater – A review. International Journal on Recent and Innovation Trends in Computing and Communication, 6(4):286–291, 2018.
[6] N.N. Sheikh, B. Kumar, and N.K. Saini. A review paper on pin fin efficiency enhancement. International Journal of Applied Engineering Research, 14(8):108–112, 2019.
[7] M. Sethi, V. Goel, and N.S. Thakur. Correlations for solar air heater duct with dimpled shape roughness elements on absorber plate. Solar Energy, 86(9):2852–2861, 2012. doi: 10.1016/j.solener.2012.06.024.
[8] T.-M. Liou, J.-J. Hwang, and S.-H. Chen. Simulation and measurement of enhanced turbulent heat transfer in a channel with periodic ribs on one principal wall. International Journal of Heat and Mass Transfer, 36(2):507–517, 1993. doi: 10.1016/0017-9310(93)80025-P.
[9] M.A. Al-Nimr. Transient behaviour of a matrix solar air heater. Energy Conversion and Management, 34(8):649–656, 1993. doi: 10.1016/0196-8904(93)90099-V.
[10] A. Kumar, A. Gholap, R. Gangarde, S.M. Shinde, M.P. Vyavahare, V.B. Mete, and S.A. Borude. Performance of solar air heaters with corrugated absorber plate – A CFD approach. International Journal of Innovative Research and Advanced Studies, 4(11):76–86, 2017.
[11] W. Xu, S. Wang, L. Huang, Q. Wang, Q. Zhang, and H. Lu. Thermo-hydraulic performance of Therminol liquid phase heat transfer fluid in a ribbed tube of solar heater. Renewable Energy, 101:919–929, 2017. doi: 10.1016/j.renene.2016.09.043.
[12] C. Sivakandhan, T.V. Arjunan, and M.M. Matheswaran. Thermohydraulic performance enhancement of a new hybrid duct solar air heater with inclined rib roughness. Renewable Energy, 147(1):2345–2357, 2020. doi: 10.1016/j.renene.2019.10.007.
[13] S.K. Dehariya and A.R. Jaurker. Experimental analysis for enhancement of heat transfer in two pass solar air heater duct by using square rib in discrete geometry. International Research Journal of Engineering and Technology, 03(06):1839–1846, 2016.
[14] S. Alfarawi, S A. Abdel-Moneim, and A. Bodalal. Experimental investigations of heat transfer enhancement from rectangular duct roughened by hybrid ribs. International Journal of Thermal Sciences, 118:123–138, 2017. doi: 10.1016/j.ijthermalsci.2017.04.017.
[15] G. Tanda. Heat transfer in rectangular channels with transverse and V-shaped broken ribs. International Journal of Heat and Mass Transfer, 47(2):229–243, 2004. doi: 10.1016/S0017-9310(03)00414-9.
[16] V. Kesharwani and R. Vishwakarma. Numerical investigation of heat transfer and fluid flow characteristics of square type tabulator roughness solar air heater. International Journal of Mechanical and Industrial Technology, 3(2):109–116, 2016.
[17] A. Kumar and M.-H. Kim. Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study. Renewable and Sustainable Energy Reviews, 54:635–652, 2016. doi: 10.1016/j.rser.2015.10.030.
[18] D. Jin, J. Zuo, S. Quan, S. Xu, and H. Gao. Thermohydraulic performance of solar air heater with staggered multiple V-shaped ribs on the absorber plate. Energy, 127:68–77, 2017. doi: 10.1016/j.energy.2017.03.101.
[19] V.S. Bisht, A.K. Patil, and A. Gupta. Review and performance evaluation of roughened solar air heaters. Renewable and Sustainable Energy Reviews, 81(1):954–977, 2018. doi: 10.1016/j.rser.2017.08.036.
[20] A. Kumar and M.-H. Kim. Effect of roughness width ratios in discrete multi V-rib with staggered rib roughness on overall thermal performance of solar air channel. Solar Energy, 119:399–414, 2015. doi: 10.1016/j.solener.2015.06.030.
[21] A.S. Yadav and J. L. Bhagoria. Modeling and simulation of turbulent flows through a solar air heater having square-sectioned transverse rib roughness on the absorber plate. The Scientific World Journal, 2013:ID827131, 2013. doi: 10.1155/2013/827131.
[22] S. Acharya, T. Myrum, X. Qiu, and S. Sinha. Developing and periodically developed flow, temperature and heat transfer in a ribbed duct. International Journal of Heat and Mass Transfer, 40(2):461–479, 1997. doi: 10.1016/0017-9310(96)00033-6.
[23] P.R. Chandra, C.R. Alexander, and J. C. Han. Heat transfer and friction behaviors in rectangular channels with varying number of ribbed walls. International Journal of Heat and Mass Transfer, 46(3):481–495, 2003. doi: 10.1016/S0017-9310(02)00297-1.
[24] S.A. Abdel-Moneim, E.F. Atwan, and A.R. El-Shamy. Heat transfer and flow friction in a rectangular duct with repeated multiple V-ribs mounted on the bottom wall. In Proceedings of the 12th International Mechanical Power Engineering Conference (IMPEC12), pages 11–25, 2001.
[25] A. Gupta, V. SriHarsha, S.V. Prabhu, and R.P. Vedula. Local heat transfer distribution in a square channel with 90° continuous, 90° saw tooth profiled and 60° broken ribs. Experimental Thermal and Fluid Science, 32(4):997–1010, 2008. doi: 10.1016/j.expthermflusci.2007.11.015.
[26] W. Siddique, T.H. Fransson, and L.A. El-Gabry. Improved design of internally cooled trailing edge at engine similar conditions: A conjugate heat transfer problem. In Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 4: Heat Transfer, Parts A and B, pages 1357-1372. Copenhagen, Denmark. June 11–15, 2012. doi: 10.1115/GT2012-68557.
[27] J.C. Han, Y.M. Zhang, and C.P. Lee. Augmented heat transfer in square channels with parallel, crossed, and V-shaped angled ribs. Journal of Heat Transfer, 113(3):590–596, 1991. doi: 10.1115/1.2910606.
[28] B. Sundén and T. Sköldheden. Heat transfer and pressure drop in a new type of corrugated channels. International Communications in Heat and Mass Transfer, 12(5):559–566, 1985. doi: 10.1016/0735-1933(85)90079-X.
[29] T. Salameh and B. Sunden. An experimental study of heat transfer and pressure drop on the bend surface of a U-duct. In Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 4: Heat Transfer, Parts A and B, pages 13-21. Glasgow, UK. June 14–18, 2010. doi: 10.1115/GT2010-22139.
[30] T. Salameh and B. Sunden. Effects of ribs on internal blade-tip cooling. In Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 5: Heat Transfer, Parts A and B, pages 1033-1041. Vancouver, British Columbia, Canada. June 6–10, 2011. doi: 10.1115/GT2011-45118.
[31] T. Salameh and B. Sunden. A numerical investigation of heat transfer in a smooth bend part of a U-duct. International Journal of Numerical Methods for Heat & Fluid Flow, 24(1):137–147, 2014. doi: 10.1108/HFF-03-2012-0066.
[32] T. Salameh and B. Sunden. Numerical investigation of convective heat transfer and pressure drop for ribbed surfaces in the bend part of a U-duct. In Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D, pages 1909-1916. Houston, Texas, USA. November 9–15, 2012. doi: 10.1115/IMECE2012-85621.
[33] L. Wang, T. Salameh, and B. Sunden. An experimental study of heat transfer on a smooth U-bend channel surface. In Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D, pages 1667-1674. Houston, Texas, USA. November 9–15, 2012. doi: 10.1115/IMECE2012-87295.
[34] A. Layek, J.S. Saini, and S.C. Solanki. Heat transfer and friction characteristics for artificially roughened ducts with compound turbulators. International Journal of Heat and Mass Transfer, 50(23-24):4845–4854, 2007. doi: 10.1016/j.ijheatmasstransfer.2007.02.042.
[35] E.A.M. Elshafei, M.M. Awad, E. El-Negiry, and A.G. Ali. Heat transfer and pressure drop in corrugated channels. Energy, 35(1):101–110, 2010. doi: 10.1016/j.energy.2009.08.031.
[36] G. Xia, D. Ma, Y. Zhai, Y. Li, R. Liu, and M. Du. Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure. Energy Conversion and Management, 105:848–857, 2015. doi: 10.1016/j.enconman.2015.08.042.
[37] Z. Wan, Q. Lin, X. Wang, and Y. Tang. Flow characteristics and heat transfer performance of half-corrugated microchannels. Applied Thermal Engineering, 123:1140–1151, 2017. doi: 10.1016/j.applthermaleng.2017.05.176.
[38] N. Tokgoz, M.M. Aksoy, and B. Sahin. Investigation of flow characteristics and heat transfer enhancement of corrugated duct geometries. Applied Thermal Engineering, 118:518–530, 2017. doi: 10.1016/j.applthermaleng.2017.03.013.
[39] W. Gao, W. Lin, T. Liu, and C. Xia. Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters. Applied Energy, 84(4):425–441, 2007. doi: 10.1016/j.apenergy.2006.02.005.
[40] T.A. Yassen, N.D. Mokhlif, and M.A. Eleiwi. Performance investigation of an integrated solar water heater with corrugated absorber surface for domestic use. Renewable Energy, vol. 138:852–860, 2019. doi: 10.1016/j.renene.2019.01.114.
[41] K. Tyagi. Detailed Experimental Measurements of Heat Transfer Augmentation in Internal Channels Using a Thermochromic Liquid Crystal Technique. Master Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA, 2015.
[42] Z. Brodnianska. Experimental investigation of convective heat transfer between corrugated heated surfaces of rectangular channel. Heat Mass Transfer, 55:3151–3164, 2019. doi: 10.1007/s00231-019-02649-3.
[43] M. Khoshvaght-Aliabadi and F. Nozan. Water cooled corrugated minichannel heat sink for electronic devices: Effect of corrugation shape. International Communications in Heat and Mass Transfer, 76:188–196, 2016. doi: 10.1016/j.icheatmasstransfer.2016.05.021.
[44] M.S. Manjunath, K.V. Karanth, and N.Y. Sharma. Numerical investigation on heat transfer enhancement of solar air heater using sinusoidal corrugations on absorber plate. International Journal of Mechanical Sciences, 138-139:219–228, 2018. doi: 10.1016/j.ijmecsci.2018.01.037.
[45] C.-O. Olsson and B. Sunden. Thermal and hydraulic performance of a rectangular duct with multiple V-shaped ribs. Journal of Heat Transfer, 120(4):1072–1077, 1998. doi: 10.1115/1.2825892.
[46] P. Naphon. Heat transfer characteristics and pressure drop in channel with V corrugated upper and lower plates. Energy Conversion and Management, 48(5):1516–1524, 2007. doi: 10.1016/j.enconman.2006.11.020.
[47] C. Zimmerer, P. Gschwind, G. Gaiser, and V. Kottke. Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls. Experimental Thermal and Fluid Science, 26(2-4):269–273, 2002. doi: 10.1016/S0894-1777(02)00136-X.
[48] H. Pehlivan, I. Taymaz, and Y. İslamoğlu. Experimental study of forced convective heat transfer in a different arranged corrugated channel. International Communications in Heat and Mass Transfer, 46:106–111, 2013. doi: 10.1016/j.icheatmasstransfer.2013.05.016.
[49] K. Sarraf, S. Launay, and L. Tadrist. Complex 3D-flow analysis and corrugation angle effect in plate heat exchangers. International Journal of Thermal Sciences, 94:126–138, 2015. doi: 10.1016/j.ijthermalsci.2015.03.002.
[50] J.E. O’Brien and E. M. Sparrow. Corrugated-duct heat transfer, pressure drop, and flow visualization. Journal of Heat Transfer, 104(3):410–416, 1982. doi: 10.1115/1.3245108.
[51] Y. Islamoglu and C. Parmaksizoglu. The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel. Applied Thermal Engineering, 23(8):979–987, 2003. doi: 10.1016/S1359-4311(03)00029-2.
[52] A.H.H. Ali and Y. Hanaoka. Experimental study on laminar flow forced-convection in a channel with upper V-corrugated plate heated by radiation. International Journal of Heat and Mass Transfer, 45(10):2107–2117, 2002. doi: 10.1016/S0017-9310(01)00309-X.
[53] Y. Qin, X. Guan, Z. Dun, and H. Liu. Numerical simulation on fluid flow and heat transfer in a corrugated plate air preheater. Journal of Chinese Society of Power Engineering, 35:213–218, 2015.
[54] M.A. Mehrabian and R. Poulter. Hydrodynamics and thermal characteristics of corrugated channels: computational approach. Applied Mathematical Modelling, 24(5):343–364, 2000. 10.1016/S0307-904X(99)00039-6.
[55] B.N. Prasad and J.S. Saini. Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Solar Energy, 41(6): 555–560, 1988. 10.1016/0038-092X(88)90058-8.
[56] S. Karsli. Performance analysis of new-design solar air collectors for drying applications. Renewable Energy, 32(10):1645–1660, 2007. 10.1016/j.renene.2006.08.005.
[57] H. Lu, B. Ren, Z. Pu, J. Si, F. Ren, and Y. Du. Simplified calculation of energy efficiency index for plate heat exchanger. IOP Conference Series: Earth and Environment Science, 552:12017, 2020. doi: 10.1088/1755-1315/552/1/012017.
[58] V.S. Hans, R P. Saini, and J.S. Saini. Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple V-ribs. Solar Energy, 84(6):898–911, 2010. doi: 10.1016/j.solener.2010.02.004.
[59] S.K. Saini and R.P. Saini. Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Solar Energy, 82(12)1118–1130, 2008. doi: 10.1016/j.solener.2008.05.010.
[60] A. Raheem, W. Siddique, Z.H. Farooqui, T. Salameh, I. Haq, K. Waheed, and K. Qureshi. Performance evaluation of adding helical-screw tape inserts in parabolic solar trough collectors as a source of cleaner energy production. Journal of Cleaner Production, 297:126628, 2021. 10.1016/j.jclepro.2021.126628.
[61] W.H. Hager. Blasius: A life in research and education. Experiments in Fluids, 34(5)566–571, 2003. doi: 10.1007/s00348-002-0582-9.
[62] C.F. Colebrook, T. Blench, H. Chatley, E.H. Essex, J.R.Finniecome, G. Lacey, J. Williamson, and G.G. Macdonald. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. Journal of the Institution of Civil Engineers, 11(4)133–156, 1939. doi: 10.1680/ijoti.1939.14509.
[63] D. Brkić. Solution of the implicit Colebrook equation for flow friction using Excel. Spreadsheets in Education, 10(2):Art.2, 2017.
[64] T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. DeWitt. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, 2011.
[65] H. Hassan, S. Abo-Elfadl, and M.F. El-Dosoky. An experimental investigation of the performance of new design of solar air heater (tubular). Renewable Energy, 151:1055–1066, 2020. doi: 10.1016/j.renene.2019.11.112.
[66] R.J. Moffat. Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1(1):3–17, 1988. doi: 10.1016/0894-1777(88)90043-X.
Go to article

Authors and Affiliations

Waseem Siddique
1
Aneeq Raheem
1
Muhammad Aqeel
2
Sualeh Qayyum
2
Tareq Salamen
3
Khalid Waheed
2
Kamran Qureshi
1

  1. Department of Mechanical Engineering, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
  2. Department of Nuclear Engineering, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
  3. Sustainable and Renewable Energy Engineering Department, University of Sharjah, United Arab Emirates

This page uses 'cookies'. Learn more