Details

Title

Effect of serrated circular rings on heat transfer augmentation of circular tube heat exchanger

Journal title

Archives of Thermodynamics

Yearbook

2022

Volume

vol. 43

Issue

No 2

Affiliation

Kharkwal, Himanshi : Department of Mechanical Engineering, B.T. Kumaon Institute of Technology, Dwarahat-263653 (Almora), Uttarakhand, India ; Singh, Satyendra : Department of Mechanical Engineering, B.T. Kumaon Institute of Technology, Dwarahat-263653 (Almora), Uttarakhand, India

Authors

Keywords

Heat transfer rate ; Friction factor ; Thermal performance factor ; Serrated circular ring

Divisions of PAS

Nauki Techniczne

Coverage

129-155

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] Kumar A., Maithani R., Suri A.: Numerical and experimental investigation of enhancement of heat transfer in dimpled rib heat exchanger tube. Heat Mass Transfer 53(2017), 3501–3516.
[2] Xie S., Liang Z., Zhang L., Wang Y.: A numerical study on heat transfer enhancement and flow structure in enhanced tube with cross ellipsoidal dimples. Int. J. Heat Mass Tran. 125(2018), 434–444.
[3] Abu-Khader M.: Further understanding of twisted tape effects as tube insert for heat transfer enhancement. Heat Mass Transfer 43(2006), 123–134.
[4] Karagoz S., Afshari F., Yildirim O., Comakli O.: Experimental and numerical investigation of the cylindrical blade tube inserts effect on the heat transfer enhancement in the horizontal pipe exchangers. Heat Mass Transfer 53(2017), 2769–2784.
[5] Tu W., Tang Y., Hu J.,Wang Q., Lu L.: Heat transfer and friction characteristics of laminar flow through a circular tube with small pipe inserts. Int. J. Therm. Sci. 96(2015), 94–101.
[6] Xin F., Liu Z., Zheng N., Liu P., Liu W.: Numerical study on flow characteristics and heat transfer enhancement of oscillatory flow in a spirally corrugated tube. Int. J. Heat Mass Tran. 127(2018), 402–413.
[7] Zheng N., Liu P., Wang X., Shan F., Liu Z., Liu W.: Numerical simulation and optimization of heat transfer enhancement in a heat exchanger tube fitted with vortex rod inserts. Appl. Therm. Eng. 123(2017), 471–484.
[8] Yuxiang H., Xianhe D., Lianshan Z.: 3Dnumerical study on compound heat transfer enhancement of converging-diverging tubes equipped with twin twisted tapes. Chinese J. Chem. Eng. 20(2012), 589–601.
[9] Akcayoglu A.: Flow past confined delta-wing type vortex generators. Exp. Therm. Fluid Sci. 35(2011), 112–120.
[10] Eiamsa-ard S., Promvonge P.: Influence of double-sided delta-wing tape insert with alternate-axes on flow and heat transfer characteristics in a heat exchanger tube, fluid flow and transport phenomena. Chinese J. Chem. Eng. 19(2011), 410- 423.
[11] Khoshvaght-Aliabadi M., Sartipzadeh O., Alizadeh A.: An experimental study on vortex-generator insert with different arrangements of delta-winglets. Energy 82(2015), 629–639.
[12] Promvonge P., Khanoknaiyakarn C., Kwankaomeng S., Thianpong C.: Thermal behavior in solar air heater channel fitted with combined rib and deltawinglet. Int. Commun. Heat Mass Tran. 38(2011), 749–756.
[13] Singh S., Pandey L., Kharkwal H., Sah H.: Augmentation of thermal performance of heat exchanger using elliptical and circular insert with vertical twisted tape. Exp. Heat Transfer 33 (2019), 6, 510–525.
[14] Vashishtha C., Patil A., Kumar M.: Experimental investigation of heat transfer and pressure drop in a circular tube with multiple inserts. Appl. Therm. Eng. 96(2016), 117–129.
[15] Alzahrani S., Usman S.: CFD simulations of the effect of in-tube twisted tape design on heat transfer and pressure drop in natural circulation. Therm. Sci. Eng. Prog. 11(2019), 325–333.
[16] Bhuiya M.M.K., Sayema A.S.M., Islam M, Chowdhury M.S.U., Shahabuddin M.: Performance assessment in a heat exchanger tube fitted with double counter twisted tape inserts. Int. Commun. Heat Mass Tran. 50(2014), 25–33.
[17] Suri A., Kumar A., Maithani R.: Heat transfer enhancement of heat exchanger tube with multiple square perforated twisted tape inserts. Exp. Invest. Corr. Dev. 116(2017) 76–96.
[18] Nakhchi M.E., Esfahani J.A.: Performance intensification of turbulent flow through heat exchanger tube using double V-cut twisted tape inserts. Chem. Eng. Process. Process Intensific. 141(2019), 107533.
[19] Nakhchi M.E., Esfahani J.A.: Numerical investigation of rectangular-cut twisted tape insert on performance improvement of heat exchangers. Int. J. Therm. Sci. 138(2019), 75–83.
[20] Hong Y., Du J., Li Q., Xu T., Li W.: Thermal-hydraulic performances in multiple twisted tapes inserted sinusoidal rib tube heat exchangers for exhaust gas heat recovery applications. Energ. Convers. Manage. 185(2019), 271–290.
[21] Bas H., Ozceyhan V.: Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall. Exp. Therm. Fluid Sci. 41(2012), 51–58.
[22] Sarviya R.M., Fuskele V.: Heat transfer and pressure drop in a circular tube fitted with twisted tape insert having continuous cut edges. J. Energ. Stor. 19(2018), 10–14.
[23] Reddy V., Kumar S., Gugulothu R., Anuja K., Rao V.: CFD analysis of a helically coiled tube in tube heat exchanger. Sci. Direct Mater. Today Proc. 4(2017), 2341–2349.
[24] Keklikcioglu O., Ozceyhan V.: Experimental investigation on heat transfer enhancement in a circular tube with equilateral triangle cross sectional coiled wire insert. Appl. Therm. Eng. 131(2018), 686–695.
[25] Gholamalizadeh E., Hosseini E., Jamanani M., Amiri A., Sare A., Alimoradi A.: Study of intensification of the heat transfer in helically coiled tube heat exchanger via coiled wire inserts. Int. J. Therm. Sci. 141(2019), 72–83.
[26] Sheikholeslami M., Gorji-Bandpy M., Ganji D.: Effect of discontinuous helical turbulators on heat transfer characteristics of double pipe water to air heat exchanger. Energ. Convers. Manage 118(2016), 75–87.
[27] Eiamsa-ard S., Nivesrangsan P., Chokphoemphun S., Promvonge P.: Influence of combined non-uniform wire coil and twisted tape inserts on thermal performance characteristics. Int. Commun. Heat Mass Tran. 37(2010), 850–856.
[28] Kongkaitpaiboon V., Nanan K., Eiamsa-ard S.: Experimental investigation of convective heat transfer and pressure loss in a round tube fitted with circular-ring turbulators. Int. Commun. Heat Mass Tran. 37(2010), 568–574.
[29] Kumar A., Chamoli S., Kumar M., Singh S.: Experimental investigation on thermal performance and fluid flow characteristics in circular cylindrical tube with circular perforated ring inserts. Exp. Therm. Fluid Sci. 79(2016), 168–174.
[30] Singh S., Negi J., Bisht S., Sah H.: Thermal performance and frictional losses study of solid hollow circular disc with rectangular wings in circular tube. Heat Mass Tran. 55(2019), 2975–2986.
[31] Pandey L., Singh S.: Numerical analysis for heat transfer augmentation in circular tube heat exchanger using triangular perforated Y-shape insert. Fluids 6(2021), 7, 247.
[32] Zong Y., Bai D., Zhou M., Zhao L.: Numerical studies on heat transfer enhancement by hollow-cross disk for cracking coils. Chem. Eng. Process. Process Intensific. 135(2019), 82–92.
[33] Bartwal A., Gautam A., Kumar M., Mamgrulkar C., Chamoli S.: Thermal performance intensification of a circular heat exchanger tube integrated with compound circular ring-metal wire net inserts. Chem. Eng. Process. Process Intensific. 124(2018), 50–70.
[34] Nakchi M.E, Esfahani J.A.: Numerical investigation of different geometrical parameters of perforated conical rings on flow structure and heat transfer in heat exchanger. Appl. Therm. Eng. 156(2019), 494–505.
[35] Gururatana S., Skullong S.: Experimental investigation of heat transfer in a tube heat exchanger with airfoil-shaped insert. Case Stud. Therm. Eng. 14(2019).
[36] Skullong S., Promvonge P., Jayranaiwachira N., Thianpong C.: Experimental and numerical heat transfer investigation in a tubular heat exchanger with delta-wing tape inserts. Chem. Eng. Process. 109(2016), 164–177.
[37] Navickaite K., Cattani L., Bahl C., Engelbrecht K.: Elliptical double corrugated tubes for enhanced heat transfer. Int. J. Heat Mass Tran. 128(2019) 363–377.
[38] Andrzejczyk R., Muszynski T., Gosz M.: Experimental investigations on heat transfer enhancement in shell coil heat exchanger with variable baffles geometry. Chem. Eng. Process. 132(2018), 114–126.
[39] Hameed V., Hussein M.: Effect of new type of enhancement on inside and outside surface of the tube side in single pass heat Exchanger. Appl. Therm. Eng. 122(2017), 484–491.
[40] Nagarajan P.K., Sivashanmugam P.: Heat transfer enhancement studies in a circular tube fitted with right-left helical inserts with spacer. World Ac. Sci., Eng. Technol., Int. J. Mech. Mechatron. Eng. 5(2011), 10, 2091–2095.
[41] Promvonge P., Koolnapadol N., Pimsarn M., Thianpong C.: Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings. Appl. Therm. Eng. 62(2014), 285–292.
[42] Sripattanapipat S., Tamna S., Jayranaiwachira N., Promvonge P.: Numerical heat transfer investigation in a heat exchanger tube with hexagonal conical-ring inserts. Energy Proced. 100(2016), 522–525.
[43] Liang Y., Liu P., Zheng N., Shan F., Liu Z., Liu W.: Numerical investigation of heat transfer and flow characteristics of laminar flow in a tube with center-tapered wavy-tape insert. Appl. Therm. Eng. 148(2019), 557–567.
[44] Skullong S., Promvonge P., Thianpong C., Jayranaiwachira N., Pimsarn M.: Thermal performance of heat exchanger tube inserted with curved-winglet tapes. Appl. Therm. Eng. 129(2018), 1197–1211.
[45] Yaningsih I., Wijayanta A., Miyazaki T., Koyama S.: Thermal hydraulic characteristics of turbulent single-phase flow in an enhanced tube using louvered strip insert with various slant angles. Int. J. Therm. Sci. 134(2018), 355–362.
[46] Modi A., Kalel N., Rathod M.: Thermal performance augmentation of finand- tube heat exchanger using rectangular winglet vortex generators having circular punched holes. Int. J. Heat Mass Tran. 158(2020), 119724.
[47] Webb R.L., Kim N.H.: Principles of Enhanced Heat Transfer (2nd Edn.). Taylor Francis, New York 2005. [48] Klein S.J., McClintock A.: The description of uncertainties in a single sample experiments. Mech. Eng. 75(1953), 3–8.
[49] Kumar A., Chamoli S., Kumar M.: Experimental investigation on thermal performance and fluid flow characteristics in heat exchanger tube with solid hollow circular disk inserts. Appl. Therm. Eng. 100(2016), 227–236.
[50] Keklikcioglu O., Ozceyhan V.: Entropy generation analysis for a circular tube with equilateral triangle cross sectioned coiled-wire inserts. Energy 139(2017), 65–75.
[51] Singh S., Kharkwal H., Gautam A., Pandey A.: CFD analysis for thermohydraulic properties in a tubular heat exchanger using curved circular rings. J. Therm. Anal. Calorim. 141(2020), 2211–2218.
[52] Siddique W., Raheem A., Aqeel M., Qayyum S., Salamen T., Waheed K., Qureshi K.: Evaluation of thermal performance factor for solar airheaters with artificially roughened channels. Arch. Mech. Eng. 68(2021), 195–225.
[53] Menni Y., Chamkha A., Zidani C., Benyoucef B.: Analysis of thermo-hydraulic performanceof a solar air heater tube with modern obstacles. Arch. Thermodyn. 41(2020), 3, 33–56.
[54] https://www.ansys.com/products/fluids/ansys-fluent
[55] https://idoc.pub/queue/ansys-fluent-users-guide-d49o6jd0g649
[56] Benlekkam M., Nehar D.: Hybrid nano improved phase change material for latent thermal energy storage system: Numerical study. Arch. Mech. Eng. 69(2022), 77–98.

Date

2022.08.02

Type

Article

Identifier

DOI: 10.24425/ather.2022.141982

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×