Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 32
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

In Mexico, one of the principal natural resources is oil, however, the activity related to it has generated hydrocarbon spills on agricultural soils. The aim of this study was to evaluate the biodegradability of diesel by means of indigenous bacteria isolated from agricultural soil contaminated with 68 900 mg kg -1 diesel. We examined indigenous bacterial strains in agricultural soils contaminated with diesel from Acatzingo, Puebla, Mexico. We performed a physicochemical soil characterization, and a bacterial population quantification favoring sporulated bacteria of the genera Bacillus and Paenibacillus taken from the study site. Six bacterial strains were isolated. The identification was made based on the 16S rRNA gene and API systems. The tolerance and biodegradation capacity in diesel were determined at 4 000 to 24 000 mg L -1 of diesel. Residual concentrations of diesel were determined by GC-FID. Soil contaminated with diesel alters the concentrations of organic matter, phosphorus and nitrogen. Analysis of soil samples showed heat resistant bacterial populations of 106 cfu g -1 dry soil. Six strains from soil pollution were identified – Pseudomonas stutzeri M1CH1, Bacillus pumilus M1CH1b, Bacillus cereus M1CH10, Bacillus subtilis M1CH15a, and Paenibacillus lautus strains M1CH19 and M1CH27. These bacteria showed different degradation behavior. Bacillus pumilus M1HC1b and Paenibacillus lautus M1CH27 use diesel oil as the sole carbon source. Bacillus pumilus degraded high concentrations of diesel (24 000 mg L -1), while for Paenibacillus lautus it became toxic and the degradation was less.
Przejdź do artykułu

Autorzy i Afiliacje

Amparo Mauricio-Gutiérrez
1
Rocío Machorro-Velázquez
2
Teresita Jiménez-Salgado
3
Candelario Vázquez-Crúz
3
María Patricia Sánchez-Alonso
3
Armando Tapia-Hernández
3

  1. CONACYT – Instituto de Ciencias, Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, Mexico
  2. Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Mexico
  3. Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico

Abstrakt

Przeprowadzona ocena samooczyszczania się wód dotyczy górnych odcinków rzek aglomeracji górnośląskiej: Bierawki, Kłodnicy, potoku Bielszowickiego i Szotkówki. Są to rzeki o małych przepływach naturalnych, znacznie obciążone zanieczyszczeniami antropogenicznymi Wykorzystano wyniki własnych badań szybkości przebiegu procesu samooczyszczania się. Skupiono się na zanieczyszczeniach rozkładalnych biochemicznie. Wyznaczono współczynniki szybkości biochemicznego rozkładu k, i zdolność przetwórczą wód. W obrębie tych samych rzek, poszczególne odcinki różnią się charakterem koryta, występują na przemian bystrza i odcinki o spowolnionym przepływie. Na potoku Bielszowickim i Szotkówce istnieją rozlewiska. Efektem tego są odmienne warunki samooczyszczania się wód. Na wszystkich badanych odcinkach szybkość procesu usuwania substancji organicznych, opisywana współczynnikami k,, najczęściej była dużo większa od literaturowych, wahających się w granicach poniżej 2,0 rzadko przekraczając wartości 3,0. Rozlewiska występujące w korytach cieków nie zawsze wpływały korzystnie na jakość ich wód. Rola takich rozlewisk w procesie samooczyszczania się rzek oraz wpływ na ekosystemy wodne wymaga odrębnych badań.
Przejdź do artykułu

Autorzy i Afiliacje

Rudolf Bujok
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Due to the observed increase in the amount of waste in landfills, there has been an increase in the demand for products made of biomaterials and the composition of biomaterials with petroleum-derived materials. The problem of waste disposal/management also applies to waste from the casting production process with the use of disposable casting moulds made with the use of organic binders (resins), as well as residues from the process of regeneration of moulding sands. A perspective solution is to add a biodegradable component to the moulding/core sand. The authors proposed the use of polycaprolactone (PCL), a polymer from the group of aliphatic polyesters, as an additive to a casting resin commonly used in practice. As part of this study, the effect of PCL addition on the (bio) degradation of dust obtained after the process of mechanical regeneration of moulding sands with organic binders was determined. The (bio) degradation process was studied in the environment reflecting the actual environmental conditions. As part of the article, dust samples before and after the duration of the (bio) degradation process were tested for weight loss by thermogravimetry (TG) and for losses on ignition (LOI).
Przejdź do artykułu

Bibliografia

[1] Bastian, K.C., Alleman, J.E. (1996). Environmental bioassay evaluation of foundry waste residuals. Joint Transportation Research Program Technical Report Series, Purdue University, Purdue e-Pubs.
[2] Brenner, V. (2003). Biodegradace persistentních xenobiotik. Biodegradace. VI, 2003, 45-47.
[3] Sobków, D., Barton, J., Czaja, K., Sudoł, M. & Mazoń, B. (2014). Research on the resistance of materials to environmental factors. CHEMIK. 68(4), 347–354. (in Polish).
[4] Stachurek I. (2010). Biomedical systems of polyethylene oxide biodegradable in the aquatic environment. PhD thesis, Politechnika Krakowska. (in Polish).
[5] Eastman, J. (2000). Protein-based binder update: performance put to the test. Modern Casting. 90, 32-34.
[6] Kramářová, D., Brandštetr, J., Rusín, K. & Henzlová, P. (2003). Biogenic polymeric materials as binders for foundry molds and cores. Slévárenství. 60(2-3), 71-73. (in Czech).
[7] Grabowska, B., Holtzer, M., Dańko, R., Górny, M., Bobrowski, A. & Olejnik, E. (2013). New bioco binders containing biopolymers for foundry industry. Metalurgija. 52(1), 47-50.
[8] Grabowska, B., Szucki, M., Suchy, J.Sz., Eichholz, S., Hodor, K. (2013). Thermal degradation behavior of cellulose-based material for gating systems in iron casting production. Polimery. 58(1), 39-44.
[9] Major-Gabryś, K. (2016). Environmentally Friendly Foundry Moulding and Core Sands. Katowice-Gliwice, Archives of Foundry Engineering, ISBN 978-83-63605-24-7 (in Polish)
[10] Major-Gabryś, K. (2019). Environmentally Friendly Foundry Molding and Core Sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911.
[11] Holtzer, M. (2001). Management of waste and by-products in foundries. Kraków: University Scientific and Didactic Publishers, AGH, Poland. (in Polish).
[12] Skrzyński, M., Dańko, R. & Czapla, P. (2014). Regeneration of used moulding sand with furfuryl resin on a laboratory stand. Archives of Foundry Engineering. 14(spec.4), 111-114. (in Polish).
[13] Dańko, R., Łucarz, M. & Dańko, J. (2014). Mechanical and mechanical-thermal regeneration of the used core sand from the cold-box process. Archives of Foundry Engineering. 14(spec.4), 21-24. (in Polish).
[14] Rui, T., Liu, J. (2010). Study of modified furan resin binder system for large steel castings. In Proceedings of 69th World Foundry Congress, 16 - 20 October 2010. Hangzhou, China, World Foundry Organization (pp. 996 – 999).
[15] Dańko, R., Holtzer, M., Dańko, J. (2015). Characteristics of dust from mechanical reclamation of moulding sand with furan cold-setting resins – impact on environment. In Proceedings of the 2015 WFO International Forum on Moulding Materials and Casting Technologies, 25 – 28 September 2015. Changsha, China. WFO Moulding Materials Commission, Foundry Institution of Chinese Mechanical Engineering Society, Productivity Center of Foundry Industry of China (38-46).
[16] Iwamoto, A. & Tokiwa, Y. (1994). Enzymatic degradation of plastics containing polycaprolactone. Polymer Degradation and Stability. 45(2), 205-213.
[17] Eastmond, G.C. (2000). Poly(ε-caprolactone) blends. Advances in Polymer Science. 149, 59-222.
[18] Gutowska, A., Michniewicz, M., Ciechańska, D. & Szalczyńska, M. (2013). Methods of testing the biodegradability of biomass materials. CHEMIK. 67(10), 945-954. (in Polish).
[19] Major-Gabryś, K., Hosadyna-Kondracka, M., Skrzyński, M., Pastirčák, R. (2020). The quality of reclaim from moulding sand with furfuryl resin and PCL additive. The abstract paper at XXVI international conference of Polish, Czech and Slovak founders: 7-9.09.2020 r. Baranów Sandomierski, Poland.
[20] Major-Gabryś, K., Hosadyna-Kondracka, M. & Stachurek, I. (2020). Determination of mass loss in samples of post-regeneration dust from moulding sands with and without PCL subjected to biodegradation processes in a water environment. Journal of Applied Materials Engineering. 60(4), 121-129.
Przejdź do artykułu

Autorzy i Afiliacje

K. Major-Gabryś
1
ORCID: ORCID
I. Stachurek
2
ORCID: ORCID
M. Hosadyna-Kondracka
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Mickiewicza 30, 30-059 Cracow, Poland
  2. ŁUKASIEWICZ Research Network - Foundry Research Institute, Zakopianska 73, 30-418 Cracow, Poland

Abstrakt

Zanieczyszczenie substancjami ropopochodnymi stanowi jeden z kluczowych problemów środowiskowych. Jedną z wiciu metod stosowanych w remediacji gruntów jest ich bioaugmentacja. Celem tego procesu jest zwiększenie liczebności i aktywności mikroorganizmów degradujących zanieczyszczenia, czego wynikiem jest przyspieszenie i podniesienie wydajności procesów rozkładu zanieczyszczeń. Innym sposobem podniesienia efektywności procesów biodegradacji jest zastosowanie roślin, szczególnie motylkowych, ze względu na ich zdolności symbiotycznego wiązania azotu atmosferycznego. Celem przeprowadzonych badań było porównanie efektywności zastosowania biopreparatów (komercyjnego i naturalnego) oraz koniczyny białej do remediacji gleb o wieloletnim charakterze skażenia substancjami ropopochodnymi. Badania prowadzone były na glebie pochodzącej z terenu rafinerii w CzechowicachDziedzicach, która została zaklasyfikowana jako silnie zdegradowana (o stosunku C/N = 100/0,7) W trakcie czrcrnastotygodniowych badań prowadzono między innymi analizy mikrobiologiczne (ogólna liczba bakterii, grzybów, promieniowców oraz bakterii z rodzaju Pseudomonasi oraz analizy chemiczne (zawartość frakcji ciężkich, całkowitej zawartości węglowodorów ropopochodnych (TPH) i WWA). Najlepszą modyfikacją okazało się zastosowanie samej koniczyny. Obecność rośI iny wpłynęła na polepszenie warunków wzrostu mikroorganizmów, spowodowała wzrost zawartości azotu i efektywności procesów biodegradacji. W próbie tej po 14 tygodniach badań odnotowano usunięcie 63% TPH, 44% frakcji ciężkich oraz 9% i 80% odpowiednio 4-6- i 2-3-picrścieniowych węglowodorów aromatycznych.
Przejdź do artykułu

Autorzy i Afiliacje

Ewa Zabłocka-Godlewska
Wioletta Przystaś

Abstrakt

W pracy badano udział bakterii redukujących siarczany (BRS) w biodegradacji materii organicznej. Mikroorganizmy izolowano z gleby poligonu wojskowego oraz z terenu rafinerii. Wyizolowane zespoły mikroorganizmów były zdolne do biodegradacji związków małocząsteczkowych będących produktami biodegradacji związków polimerowych występujących w środowisku. Stwierdzono, że udział BRS w biodegradacji związków organicznych w glebie był porównywalny z udziałem w biodegradacji materii organicznej w osadach morskich (40-55%).
Przejdź do artykułu

Autorzy i Afiliacje

Dorota Wolicka
Andrzej Borkowski

Abstrakt

W niniejszej pracy przedstawiono w ujęciu ilościowym wpływ anionowych środków powierzchniowo czynnych (ASPC) na morfologię kłaczków osadu czynnego i aktywność biomasy. Obiekt badań stanowiły trzy anionowe surfaktanty: dodecylosiarczan sodu, alkilobenzenosulfonian sodu i alkilotrioksyetylenosiarczan sodu. Doświadczenia przeprowadzono w układzie okresowym w szerokim zakresie stężeń ASPC w ściekach od 2,5 do 2500 mgdm3. Wszystkie trzy badane surfaktanty przyczyniały się do zmniejszenia wielkości kłaczków osadu czynnego na podobnym poziomie, pomimo odmiennej budowy chemicznej. Średnia powierzchnia rzutu kłaczków zmniejszała się pod wpływem surfaktantów o około 30%, kiedy stężenie ASPC w ściekach wynosiło od 2,5 do 25 rngdm-3 i o 50-60% przy stężeniu ASPC w ściekach 250-2500 mgdm. Alkilobenzenosulfonian sodu najsilniej inhibitował aktywność dehydrogenazową biomasy osadu czynnego. Towarzyszył temu niższy, w porównaniu do pozostałych badanych ASPC, stopień usunięcia tego surfaktanta i produktów jego rozkładu ze ścieków, zwłaszcza w niższym zakresie jego początkowych stężeń w ściekach.
Przejdź do artykułu

Autorzy i Afiliacje

Ewa Liwarska--Bizukojc
Marcin Bizukojc

Abstrakt

In environmental matrices there are mixtures of parent drug and its metabolites. The majority of research is focused on the biological activity and toxic effect of diclofenac (DCF), there is little research on the biological activity of DCF metabolites and their mixtures. The study focused on the assessment of the biological impact of DCF, its metabolites 4’-hydroxydiclofenac (4’-OHDCF) and 5-hydroxydiclofenac (5-OHDCF) and their mixtures on E. coli strains. The biological effects of tested chemicals were evaluated using the following: E. coli K-12 cells viability assay, the inhibition of bacteria culture growth, ROS (reactive oxygene species) generation and glutathione (GSH) content estimation. Moreover, we examined the influence of the mixture of DCF with caffeic acid (CA) on E. coli cells viability. Our results showed the strongest impact of the mixtures of DCF with 4’-OHDCF and 5-OHDCF on E. coli SM biosensor strains in comparison to parent chemicals. Similar results were obtained in viability test, where we noticed the highest reduction in E. coli cell viability after bacteria incubation with the mixtures of DCF with 4’-OHDCF and 5-OHDCF. Similarly, these mixtures strongly inhibited the growth of E. coli culture. We also found synergistic effect of caffeic acid in combination with DCF on E. coli cells viability. After bacteria treatment with the mixture of DCF and its metabolites we also noted the strongest amount of ROS generation and GSH depletion in E. coli culture. It suggests that oxidative stress is the most important mechanism underlying the activity of DCF and its metabolites.

Przejdź do artykułu

Autorzy i Afiliacje

Marzena Matejczyk
1
Piotr Ofman
2
Katarzyna Dąbrowska
3
Renata Świsłocka
1
Włodzimierz Lewandowski
1

  1. Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Division of Chemistry, Biology and Biotechnology, Bialystok, Poland
  2. Bialystok University of Technology, Faculty of Environmental Engineering Technology and Systems, Bialystok University of Technology, Bialystok, Poland
  3. Department of Microbiology, Institute of Agricultural and Food Biotechnology, Warsaw, Poland

Abstrakt

The Fe-based alloy with manganese led to the appearance of new austenitic alloys, with the antiferromagnetic property pursued, resulting in compatibility with the magnetic field as that of magnetic resonance imaging. The corrosion resistance behavior of the biodegradable Fe-Mn-Si alloy was analyzed in a thermostatic chamber at 37±1°C for 24, 48 and 72 hours by immersing in Ringer solution. Also, the cast and laminated samples were subjected to electro-corrosion tests using a potentiostat equipment. Linear and cyclic potentiometry is presented for characterize the corrosion behavior of the experimental samples in electrolyte. Due to the interaction between the alloy and the liquid medium a change in the solution pH was observed. Structure analysis and chemical composition details of the surfaces were obtained using electron scanning microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS).
Przejdź do artykułu

Autorzy i Afiliacje

A.-M. Roman
1
ORCID: ORCID
R. Chelariu
1
ORCID: ORCID
R. Cimpoesu
1
ORCID: ORCID
I. Stirbu
1
ORCID: ORCID
I. Ionita
1
ORCID: ORCID
M.M. Cazacu
2
ORCID: ORCID
B.A. Prisecariu
3
ORCID: ORCID
N. Cimpoesu
3
ORCID: ORCID
P. Pietrusiewicz
4
ORCID: ORCID
A. Sodor
3
ORCID: ORCID

  1. Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, Prof.dr.doc. D. Mangeron no. 41 Street, 700050 Iasi, Romania
  2. “Gheorghe Asachi” Technical University of Iasi, Department of Physics, 700050 Iasi, Romania
  3. “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 16 Univ. Street, 700115 Iasi, Romania
  4. Częstochowa University of Technology, Department of Physics , 42-200 Częstochowa, Poland

Abstrakt

Plastics have become indispensable in everyday life due to their properties. For this reason, the accumulation of polymer waste in the natural environment is becoming a serious global problem. The aim of the research was to isolate microorganisms capable of biodegrading plastics. The studies focused on the biodegradation of low-density polyethylene as the most common polymer. Seven and five bacterial strains were isolated from the landfill and compost, respectively. The morphological and biochemical characteristics of the isolates were determined. These isolates were able to survive in an environment where the only carbon source was LDPE, but no increase in biomass was obtained. However, analysis of the spectra obtained by the ATR-FTIR method showed the formation of chemical changes on the polymer surface. Bacterial biofilm formation was visualized by scanning electron microscopy. The toxicity of plastic biodegradation products in a liquid environment was tested and their safety for plants was confirmed. However, these biodegradation products have acute lethal toxicity for the Daphnia magna.
LDPE films were pre-treated with H 2O 2, HNO 3, or heat. The biodegradation of HNO 3-treated LDPE by isolated bacteria was the most significant. The weight loss was approximately 8%, and 6%, for landfill and compost-isolated bacterial strains, respectively.
Przejdź do artykułu

Autorzy i Afiliacje

Elżbieta Szczyrba
1
ORCID: ORCID
Tetiana Pokynbroda
2
ORCID: ORCID
Nataliia Koretska
2
ORCID: ORCID
Agnieszka Gąszczak
1
ORCID: ORCID

  1. Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice, Poland
  2. Department of Physical Chemistry of Fossil Fuels of the Institute of Physical-Organic Chemistry and Coal Chemistry named after L.M. Lytvynenko of the National Academy of Sciences of Ukraine, Naukova str, 79060, Lviv, Ukraine

Abstrakt

The large diversity of chemical substances present in air, water, or soil makes it necessary tostudy their mutual impact on the effectiveness of microbiological decomposition ofcontaminants. This publication presents the results of the studies aimed at evaluating the effect of two biogenic heavy metals - zinc and copper - on the phenol biodegradation by the Stenotrophomonas maltophilia KB2 strain. The tests were carried out for concentrations ofmetals significantly exceeding the legally permitted wastewater values: for zinc up to13.3 g·m -3, and copper up to 3.33 g·m -3. In the tested metal concentration range, phenol biodegradation by the S. maltophilia KB2 strain was not significantly influenced by theintroduced dose of zinc. While the presence of copper inhibited both biomass growth andsubstrate degradation. Kinetic data of metal and phenol mixtures were analyzed and very goodcorrelations were obtained for the proposed equations. An equation consistents with the Hanand Levenspiel model was proposed for the system S. maltophilia KB2-phenol-copper, whilean equation consistents with the Kai model for the system St. maltophilia KB2-phenol-zinc. The simultaneous presence of Zn and Cu ions in the culture resulted in a stronger inhibition ofphenol biodegradation.
Przejdź do artykułu

Autorzy i Afiliacje

Agnieszka Gąszczak
1
ORCID: ORCID
Elżbieta Szczyrba
1
ORCID: ORCID
Anna Szczotka
1
ORCID: ORCID

  1. Polish Academy of Sciences, Institute of Chemical Engineering, Baltycka 5, 44-100 Gliwice, Poland

Abstrakt

Grunt, sztucznie skażony trichloroetylenem (TCE), został oczyszczony za pomocą bioremediacj i przebiegającej w środowisku redukcyjnym, w warunkach beztlenowych. W celu określenia optymalnych parametrów procesu bioremcdiacji przeprowadzono badania laboratoryjne. Na ich podstawie wybrano mieszaninę osadów pochodzących ze ścieków komunalnych jako inoculum. Zaprojektowano i zbudowano bioreaktor przeznaczony do oczyszczania gruntu z rozpuszczalników chlorowanych. Jego komora o objętości 6 m3, została wyposażona w układy recyrkulacji gazu i odcieku oraz system akwizycji danych pomiarowych. Bioreaktor pracował jako reaktor ze złożem stałym o ciągłym przepływie gazu. Podczas 28 tygodni 4 Mg gruntu skażonego trichloroetylenem o stężeniu 350 mg/kg gruntu zostały całkowicie oczyszczone w warunkach beztlenowych. Oznaczone w próbkach gazowych i ciekłych stężenia TCE, dichloroetylenu (OCE), chlorku winylu (VC) i etylenu (ETH) wskazują, że w bioreaktorze nastąpiła stopniowa dehalogenacja trichloroetylenu do etylenu. Potwierdza to również wzrastające stężenie jonu chlorkowego w odcieku.
Przejdź do artykułu

Autorzy i Afiliacje

Adam Worsztynowicz
Dorota Rzychoń
Tomasz Siobowicz
Sebastian lwaszenko
Grażyna Płaza
Krzysztof Ulfig

Abstrakt

Podczas prac ze złoża biofiltra zainstalowanego w fabryce kabli ,,Załom" kolo Szczecina wyizolowano grzyba Fusarium so/ani zdolnego do wykorzystywania metyloizobutyloketonu (MIBK) jako jedynego źródła węgla i energii. Hodowle namnażające prowadzono w półprzepływowym układzie bazującym na płuczce napełnionej pożywką mineralną, przez którą przetłaczano z zadaną szybkością powietrze domieszkowane metyloizobutyloketonem. Celem ochrony hodowli przed zainfekowaniem na drodze strumienia powietrza zainstalowano filtr bakteryjny. Z tak wzbogaconych hodowli izolowano mikroorganizmy wykonując posiewy na płytkach Petriego zalewanych wspomnianą wyżej pożywką mineralną uzupełnioną agarem. Testy potwierdzające oraz wstępne testy kinetyki biodegradacji MIBK przez wyizolowanego Fusariurn solani wykonano w analogicznym zestawie badawczym, jak stosowany do hodowli namnażających. W czasie badań mierzono natężenie przepływu gazów oraz oznaczano stężenia metyloizobutyloketonu przed i za płuczkami metodą chromatograficzną. Na bazie tych danych obliczono sprawność i szybkości biodegradacji MIBK przez Fusarium so/ani. Maksymalna szybkości . biodegradacji wynosiła około 60 gm+h', przy obciążeniach do 200 g-m+h', a sprawność zawierała się w przedziale od 40 do 80%, malejąc w miarę wzrostu obciążenia hodowli testowana substancją.
Przejdź do artykułu

Autorzy i Afiliacje

Krystyna Przybulewska
Andrzej N. Wieczorek

Abstrakt

Przepracowane oleje smarowe należą do zanieczyszczeń niebezpiecznych z uwagi na ich toksyczność i małą podatność na biodegradację. W procesie bioremediacji gleby piaszczystej zanieczyszczonej przepracowanym olejem Mobil 1 (0,5 g/100 g suchej masy gleby) zastosowano wyizolowane szczepy bakterii aktywne w rozkładzie zanieczyszczenia. Mikroorganizmy wprowadzono do gleby w postaci wolnych komórek i immobilizatu w wiórach dębowych, uzupełniono zawartość soli biogennych i wody oraz zapewniono warunki tlenowe procesu. Gleba była ponadto okresowo doszczepiana aktywnymi szczepami bakterii. Po pięciu miesiącach trwania badań uzyskano eliminację zanieczyszczenia na poziomic 93% w reaktorze zawierającym immobilizowaną biomasę. Dla porównania, w reaktorze kontrolnym, w którym nic stosowano żadnych zabiegów biotechnologicznych, eliminacja zanieczyszczenia wynosiła 47%. Zawartość bakterii w trzech reaktorach była zbliżona w ciągu pierwszych trzech miesięcy trwania badań, jednak aktywność enzymatyczna biomasy w reaktorze kontrolnym przez cały czas utrzymywała się na bardzo niskim poziomic. Było to prawdopodobnie przyczyną niskiej efektywności biodegradacji zanieczyszczeń w tej glebie.
Przejdź do artykułu

Autorzy i Afiliacje

Ewa Zborowska
Jeremi Naumczyk
Ewelina Bugryn
Renata Wojciechowska

Abstrakt

Surfactants can interfere with the biological wastewater treatment processes. They contribute to the changes in activated sludge floes structure. In order to quantify the influence of surfactants on sludge floes morphology the series of experiments in the flow continuous system were conducted. Sodium dodccyl sulphate, which belongs to the most ubiquitous anionic surfactant in everyday use, was selected to be the object of investigations. The results of its biodegradation in continuous flow system at influent concentration of 250 mg -dm' are presented. It turned out that SDS diminished the mean projected area of floes from 50 OOO to 15 OOO μm' with the increase of dilution rate from 0.029 to 0.192 h·1• At the same time the obtained data confirmed that there was a correlation between the morphological parameters of floes and other biomass indicators. The linear relation between mean projected area of floes and volatile suspended solids was found.
Przejdź do artykułu

Autorzy i Afiliacje

Ewa Liwarska--Bizukojc
Marcin Bizukojc
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Studies on packaging made of polylactide (PLA) subjected to long-term influence of soil environment conditions have been presented in this paper. The scientific objective of this study was to determine changes in selected properties of the PLA packaging after long-term incubation in soil. These changes were investigated by scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The structure, thermal properties, and disintegration degree of the packaging after their three-year incubation in soil have been discussed. It was found that the PLA packaging did not disintegrate significantly in the soil environment, and slight changes in their structure and lack of significant changes in thermal properties indicate that the efficiency of their degradation in soil conditions after three years is very low. This was mainly due to inadequate temperatures in the soil. It was also found (based on the results of scanning electron microscopy and gel permeation chromatography) that initiation of the biodegradation process took place and that this process is much faster than in the case of conventional non-biodegradable polymers. The results are confirmation that materials obtained of various biodegradable polymers (not only PLA) should be biodegradable only under strictly defined conditions, allocated to a specific type of polymer, i.e. those in which they are easily and quickly biodegradable
Przejdź do artykułu

Bibliografia

  1. Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K.S. & Kubo, M. (2016). Degradation of Bioplastics in Soil and Their Degradation Effects on Environmental Microorganisms, Journal of Agricultural Chemistry and Environment, 5, pp. 23-34. DOI:10.4236/jacen.2016.51003
  2. Ahmed, J. & Varshney, S.K. (2011). Polylactides – Chemistry, Properties and Green Packaging Technology: A Review, International Journal of Food Properties, 14, pp. 37-58. DOI:10.1080/10942910903125284
  3. Bhagwat, G., Gray, K., Wilson, S.P., Muniyasamy, S., Vincent, S.G.T., Bush, R. & Palanisami, T. (2020). Benchmarking Bioplastics: A Natural Step Towards a Sustainable Future, Journal of Polymers and the Environment, 28, pp. 3055-3075. DOI:10.1007/s10924-020-01830-8
  4. Deroiné, M., Le Duigou, A., Corre, Y.M., Le, Gac, P.Y., Davies, P., César, G. & Bruzaud, S. (2014). Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater, Polymer Degradation and Stability, 108, pp. 319-329. DOI:10.1016/j.polymdegradstab.2014.01.020
  5. Dintcheva, N.T., Al-Malaika, S., Morici, E. & Arrigo, R. (2017). Thermo-oxidative stabilization of poly(lactic acid)-based nanocomposites through the incorporation of clay with in-built antioxidant activity, Journal of Applied Polymer Science, 134, pp. 44974-44986. DOI:10.1002/app.44974
  6. Donghee, K., Yoshito, A., Yoshihito, S. & Haruo, N. (2011). Biomass-based composites from poly(lactic acid) and wood flour by vapor-phase assisted surface polymerization, ACS Applied Materials & Interfaces, 3, pp. 385-391. DOI:10.1021/am1009953
  7. Fischer, E.W., Sterzel, H.J. & Wegner, G. (1973). Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions, Colloid and Polymer Science, 251, pp. 980-990. DOI:10.1007/BF01498927
  8. Itavaara, M., Karjomaa, S. & Selin, J.F. (2002). Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions, Chemosphere, 46, pp. 879-885. DOI:10.1016/s0045-6535(01)00163-1
  9. Janczak, K., Dąbrowska, G.B., Raszkowska-Kaczor., A., Kaczor, D., Hrynkiewicz, K. & Richert, A. (2020). Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants, International Biodeterioration & Biodegradation, 155, 105087. DOI:10.1016/j.ibiod.2020.105087
  10. John, R.P., Nampoothiri, K.M. & Pandey, A. (2007). Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives, Applied Microbiology and Biotechnology, 74, pp. 524-534. DOI:10.1007/s00253-006-0779-6
  11. Kale, G., Auras, R. & Singh, S.P. (2007). Comparison of the degradability of poly (lactide ) packages in composting and ambient exposure conditions, Packaging Technology & Science, 20, pp. 49-70. DOI:10.1002/pts.742
  12. Kamiya, M., Asakawa, S. & Kimura, M. (2007). Molecular Analysis of Fungal Communities of Biodegradable Plastics in Two Japanese Soils, Soil Science and Plant Nutrition, 53, pp. 568-574. DOI:10.1111/j.1747-0765.2007.00169.x
  13. Kim, M.N., Kim, W.G., Weon, H.Y. & Lee, S.H. (2008). Poly(L-Lactide)-Degrading Activity of a Newly Isolated Bacterium, Journal of Applied Polymer Science, 109, pp. 234-239. DOI:10.1002/app.26658
  14. Kim, D.Y. & Rhee, Y.H. (2003). Biodegradation of Microbial and Synthetic Polyesters by Fungi, Applied Microbiology and Biotechonology, 61, pp. 300-308. DOI:10.1007/s00253-002-1205-3
  15. Lee, S.H. & Kim, M.N. (2010). Isolation of Bacteria Degrading Poly(butylenes succinate-co-butylene adipate) and Their lip A Gene, International Biodeterioration and Biodegradation, 64, pp. 184-190. DOI:10.1016/j.ibiod.2010.01.002
  16. Mehlika, K., Ashley, H. & Geoffrey, D.R. (2014). Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly(lactic) acid (PLA) in soil and compost, International Biodeterioration & Biodegradation, 95, pp. 301-310. DOI:10.1016/j.ibiod.2014.09.006
  17. Nakamura, K., Tomita, T., Abe, N. & Kamio, Y. (2001). Purification and Characterization of an Extracellular Poly(L-Lactic Acid) Depolymerase from a Soil Isolate, Amycolatopsis sp. Strain K104-1, Applied Environmental Microbiology, 67, pp. 345-353. DOI:10.1128/aem.67.1.345-353.2001
  18. PlasticsEurope (2022). Plastics – the Facts 2022, (https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (11.01.2023))
  19. Poluszyńska, J., Ciesielczuk, T., Biernacki, M. & Paciorkowski, M. (2021). The effect of temperature on the biodegradation of different types of packaging materials under test conditions, Archives of Environmental Protection, 47, pp. 74-83. DOI:10.24425/aep.2021.139503
  20. Saadi, Z., Rasmont, A., Cesar, G., Bewa, H. & Benguigui, L. (2012). Fungal degradation of poly(l-lactide) in soil and in compost, Journal of Polymers and the Environment, 20, pp. 273-282. DOI:10.1007/s10924-011-0399-9
  21. Sarasua, J.R., Prud’Homme, R.E., Wisniewski, M., Le Borgne, A. & Spassky, N. (1998). Crystallization and Melting Behavior of Polylactides. Macromolecules, 31, pp. 3895-3905. DOI:10.1021/ma971545p
  22. Satti, S.M., Shah, A.A., Marsh, T.L. & Auras, R. (2018). Biodegradation of Poly(lactic acid) in Soil Microcosms at Ambient Temperature: Evaluation of Natural Attenuation, Bio-augmentation and Bio-stimulation, Journal of Polymers and the Environment, 26, pp. 3848-3857. DOI:10.1007/s10924-018-1264-x
  23. Shah, A.A., Hasan, F., Hameed, A. & Ahmed, S. (2008). Biological Degradation of Plastics: A Comprehensive Review, Biotechnology Advances, 26, pp. 246-265. DOI:10.1016/j.biotechadv.2007.12.005
  24. Siparsky, G.L., Voorhees, K.J., Dorgan, J.R. & Schilling, K. (1997). Water transport in polylactic acid (PLA), PLA/polycaprolactone copolymers, and PLA/polyethylene glycol blends, Journal of Environmental Polymer Degradation, 5, pp. 125-136. DOI:10.1007/BF02763656
  25. Södergard, A., Selin, J.F. & Näsman, J.H. (1996). Hydrolytic degradation of peroxide modified poly(L-lactide), Polymer Degradation and Stability, 51, pp. 351-359. DOI:10.1016/0141-3910(95)00271-5
  26. Sterzyński, T. (2000). Processing and property improvement in isotactic polypropylene by heterogeneous nucleation, Polimery, 45, pp. 786-791.
  27. Teeraphatpornchai, T., Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nakayama, M., Nomura, N., Nakahara, T. & Uchiyama, H. (2003). Isolation and Characterization of a Bacterium That Degrades Various Polyester-Based Biodegradable Plastics, Biotechnology Letters, 25, pp. 23-28. DOI:10.1023/A:1021713711160
  28. Tsuji, H., Tezuka, Y., Saha, S.K., Suzuki, M. & Itsuno, S. (2005). Spherulite growth of l-lactide copolymers: Effects of tacticity and comonomers, Polymer, 46, pp. 4917-4927. DOI:10.1016/j.polymer.2005.03.069
  29. Weir, N.A., Buchanan, F.J., Orr, J.F., Farrar, D.F. & Dickson, G.R. (2004). Degradation of poly-L-lactide. Part 2: increased temperature accelerated degradation, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 218, pp. 321-330. DOI:10.1243/0954411041932809
  30. Żenkiewicz, M., Malinowski, R., Rytlewski, P., Richert, A., Sikorska, W. & Krasowska, K. (2012). Some composting and biodegradation effects of physically or chemically crosslinked poly(lactic acid), Polymer Testing, 31, pp. 83-92. DOI:10.1016/j.polymertesting.2011.09.012
Przejdź do artykułu

Autorzy i Afiliacje

Rafał Malinowski
1
ORCID: ORCID
Marta Musioł
2
ORCID: ORCID
Krzysztof Moraczewski
3
Volodymyr Krasinskyi
1
ORCID: ORCID
Lauren Szymańska
1
ORCID: ORCID
Krzysztof Bajer
1
ORCID: ORCID

  1. Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, Toruń, Poland
  2. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  3. Faculty of Materials Engineering, Kazimierz Wielki University, Bydgoszcz, Poland


Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Polycyclic aromatic hydrocarbons (PAHs) are significant pollutants found in petroleum products. There is ample literature on the biodegradation of PAHs containing less than five rings, but little has been done on those with more than five rings. Coronene (CRN), a seven-ring-containing PAH, has only been shown to be degraded by one bacterial strain. In this study, a bacterial strain 10SCRN4D was isolated through enrichment in the presence of CRN and 10% NaCl (w/v). Analysis of the 16S rRNA gene identified the strain as Halomonas caseinilytica. The strain was able to degrade CRN in media containing 16.5–165 μM CRN with a doubling time of 9–16 hours and grew in a wide range of salinity (0.5–10%, w/v) and temperature (30–50°C) with optimum conditions of pH 7, salinity 0.5%–10% (w/v), and temperature 37°C. Over 20 days, almost 35% of 16.5 μM CRN was degraded, reaching 76% degradation after 80 days as measured by gas chromatography. The strain was also able to degrade smaller molecular weight PAHs such as benzo[a]pyrene, pyrene, and phenanthrene. This is the first report of Halomonas caseinilytica degrading CRN as the sole carbon source in high salinity, and thus highlights the potential of this strain in bioremediation.
Przejdź do artykułu

Bibliografia


  1. Abbasian, F., Lockington, R., Mallavarapu, M. & Naidu, R. (2015). A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Appl Biochem Biotechnol 176, pp. 670–699. DOI:10.1007/s12010-015-1603-5.
  2. Al-Awadhi, H., Sulaiman, R. H. D., Mahmoud, H. M. & Radwan, S. S. (2007). Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf. Appl Microbiol Biotechnol 77, pp. 183–186. DOI:10.1007/s00253-007-1127-1.
  3. Alva, V. A. & Peyton, B. M. (2003). Phenol and Catechol Biodegradation by the Haloalkaliphile Halomonas campisalis: Influence of pH and Salinity. Environ Sci Technol 37, pp. 4397–4402. DOI:10.1021/es0341844.
  4. Anonymous (2023). Team, R: A Language and Environment for Statistical Computing, 2023 (R Foundation for Statistical Computing: Vienna). 10 Feb 2023. Available at: http://www.r-project.org/index.html.
  5. Arulazhagan, P. & Vasudevan, N. (2011). Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Mar Pollut Bull 62, pp. 388–394. DOI:10.1016/j.marpolbul.2010.09.020.
  6. Baali, A. & Yahyaoui, A. (2019). “Polycyclic Aromatic Hydrocarbons (PAHs) and Their Influence to Some Aquatic Species,” in Biochemical Toxicology, eds. M. Ince, O. K. Ince, and G. Ondrasek (Rijeka: IntechOpen), Ch. 12. DOI:10.5772/intechopen.86213.
  7. Bamforth, S. M. & Singleton, I. (2005). Review bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. J.Chem.Techn. Biotechn 80, pp. 723–736.
  8. Budiyanto, F., Thukair, A., Al-Momani, M., Musa, M. M. & Nzila, A. (2018). Characterization of Halophilic Bacteria Capable of Efficiently Biodegrading the High-Molecular-Weight Polycyclic Aromatic Hydrocarbon Pyrene. Environ Eng Sci 35. DOI:10.1089/ees.2017.0244.
  9. Cheffi, M., Hentati, D., Chebbi, A., Mhiri, N., Sayadi, S., Marqués, A. & Chamkha, M. (2020). Isolation and characterization of a newly naphthalene-degrading Halomonas pacifica, strain Cnaph3: biodegradation and biosurfactant production studies. 3 Biotech 10. DOI:10.1007/s13205-020-2085-x.
  10. Chen, C., Anwar, N., Wu, C., Fu, G., Wang, R., Zhang, C., Wu, Y., Sun, C & Wu, M. (2018). Halomonas endophytica sp. nov., isolated from liquid in the stems of Populus euphratica. Int J Syst Evol Microbiol 68, pp. 1633–1638. DOI:10.1099/ijsem.0.002585.
  11. Dhar, K., Subashchandrabose, S. R., Venkateswarlu, K., Krishnan, K. & Megharaj, M. (2020). Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review. Rev Environ Contam Toxicol 251, pp. 25–108. DOI:10.1007/398_2019_29.
  12. Dore, S. Y., Clancy, Q. E., Rylee, S. M. & Kulpa Jr., C. F. (2003). Naphthalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl Microbiol Biotechnol 63, pp. 194–199. DOI:10.1007/s00253-003-1378-4.
  13. Ghosal, D., Ghosh, S., Dutta, T. K. & Ahn, Y. (2016). Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Front Microbiol 7, 1369. DOI:10.3389/fmicb.2016.01369.
  14. Govarthanan, M., Khalifa, A. Y. Z., Kamala-Kannan, S., Srinivasan, P., Selvankumar, T., Selvam, K. & Kim, W. (2020). Significance of allochthonous brackish water Halomonas sp. on biodegradation of low and high molecular weight polycyclic aromatic hydrocarbons. Chemosphere 243, 125389. DOI:10.1016/j.chemosphere.2019.125389.
  15. Habe, H., Kanemitsu, M., Nomura, M., Takemura, T., Iwata, K., Nojiri, H., Yamane, H. & Omori, T. (2004). Isolation and characterization of an alkaliphilic bacterium utilizing pyrene as a carbon source. J Biosci Bioeng 98, pp. 306–308. DOI:10.1016/S1389-1723(04)00287-7.
  16. Hajizadeh, N., Sefidi Heris, Y., Zununi Vahed, S., Vallipour, J., Hejazi, M., Golabi, S., Asadpour-Zeynali, K. & Hejazi, M.S. (2015). Biodegradation of Para-Amino Acetanilide by Halomonas sp. TBZ3. Jundishapur J Microbiol 8. DOI:10.5812/jjm.18622.
  17. Harrison, J., Hallsworth, J. & Cockell, C. (2015). Reduction of the Temperature Sensitivity of Halomonas hydrothermalis by Iron Starvation Combined with Microaerobic Conditions. Appl Environ Microbiol 81, pp. 2156–2162. DOI:10.1128/AEM.03639-14.
  18. Juhasz, A. L., Britz, M. L. & Stanley, G. A. (1996). Degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas cepacia. Biotechnol Lett 18, pp. 577–582. DOI:10.1007/BF00140206.
  19. Juhasz, A. L., Britz, M. L. & Stanley, G. A. (1997). Degradation of benzo[a]pyrene, dibenz[a,h]anthracene and coronene by Burkholderia cepacia. Water Science and Technology 36, pp. 45–51. DOI:10.1016/S0273-1223(97)00641-0.
  20. Juhasz, A. L., Stanley, G. A. & Britz, M. L. (2000). Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett Appl Microbiol 30, pp. 396–401. DOI:10.1046/j.1472-765x.2000.00733.x.
  21. Kaye, J. Z., Márquez, M. C., Ventosa, A. & Baross, J. A. (2004). Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54, pp. 499–511. DOI:10.1099/ijs.0.02799-0.
  22. Lawal, A. T. (2017). Polycyclic aromatic hydrocarbons. A review. Cogent Environ Sci 3, 1339841. DOI:10.1080/23311843.2017.1339841.
  23. Leahy, J. G. & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54, pp. 305–315. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC372779/.
  24. Lee, B.-K. & v Vu, T. (2010). “Sources, Distribution and Toxicity of Polyaromatic Hydrocarbons (PAHs) in Particulate Matter,” in Air Pollution DOI:10.5772/10045.
  25. Lima, A. L. C., Farrington, J. W. & Reddy, C. M. (2005). Combustion-Derived Polycyclic Aromatic Hydrocarbons in the Environment—A Review. Environ Forensics 6, pp. 109–131. DOI:10.1080/15275920590952739.
  26. Margesin, R. & Schinner, F. (2001). Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56, pp. 650–663. DOI:10.1007/s002530100701.
  27. Ming, H., Ji, W., Li, M., Zhao, Z., Cheng, L., Niu, M., Ling-Yu, Z., Wang, Y. & Guo-Xing, N. (2020). Halomonas lactosivorans sp. nov., isolated from salt-lake sediment. Int J Syst Evol Microbiol 70, pp. 3504–3512. DOI:10.1099/ijsem.0.004209.
  28. Nzila, A. (2018). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. Environ Pollut 239, pp. 788–802. DOI:10.1016/j.envpol.2018.04.074.
  29. Nzila, A. & Musa, M. M. (2020). Current Status of and Future Perspectives in Bacterial Degradation of Benzo[a]pyrene. Int J Environ Res Public Health 18. DOI:10.3390/ijerph18010262.
  30. Nzila, A., Musa, M. M., Sankara, S., Al-Momani, M., Xiang, L. & Li, Q. X. (2021). Degradation of benzo[a]pyrene by halophilic bacterial strain Staphylococcus haemoliticus strain 10SBZ1A. PLoS One 16, e0247723. DOI:10.1371/journal.pone.0247723.
  31. Nzila, A., Ramirez, C. O. C. O., Musa, M. M. M., Sankara, S., Basheer, C. & Li, Q. X. Q. X. (2018). Pyrene biodegradation and proteomic analysis in Achromobacter xylosoxidans, PY4 strain. Int Biodeterior Biodegradation 130, pp. 40–47. DOI:10.1016/j.ibiod.2018.03.014.
  32. Nzila, A., Sankara, S., Al-Momani, M., Musa Musa, M. & Musa, M. M. (2017). Isolation and characterisation of bacteria degrading polycyclic aromatic hydrocarbons: phenanthrene and anthracene. Arch Environ Prot 44, pp. 43–54. DOI:10.1515/aep-2016-0028.
  33. Patel, A. B., Shaikh, S., Jain, K. R., Desai, C. & Madamwar, D. (2020). Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front Microbiol 11. Available at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.562813.
  34. Pohl, A. & Kostecki, M. (2020). Spatial distribution, ecological risk and sources of polycyclic aromatic hydrocarbons (PAHs) in water and bottom sediments of the anthropogeniclymnic ecosystems under conditions of diversified anthropopressure. Archives of Environmental Protection 46, pp. 104–120. DOI:10.24425/aep.2020.135769.
  35. Qin, W., Fan, F., Zhu, Y., Huang, X., Ding, A., Liu, X. & Dou, J. (2018). Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarbon-contaminated soil. Braz J Microbiol 49, pp. 258–268. DOI:10.1016/j.bjm.2017.04.014.
  36. Stapleton, R. D., Savage, D. C., Sayler, G. S. & Stacey, G. (1998). Biodegradation of aromatic hydrocarbons in an extremely acidic environment. Appl Environ Microbiol 64, pp. 4180–4184. DOI:10.1128/AEM.64.11.4180-4184.1998.
  37. Swaathy, S., Kavitha, V., Pravin, A. S., Mandal, A. B. & Gnanamani, A. (2014). Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514. Biotechnology Reports 4, pp. 161–170. DOI:10.1016/j.btre.2014.10.004.
  38. Wenting, R., Montazersaheb, S., Khan, S. A., Kim, H. M., Tarhriz, V., Hejazi, M. A. & Che, O.O. (2021). Halomonas azerica sp. nov., Isolated from Urmia Lake in Iran. Curr Microbiol 78, pp. 3299–3306. DOI:10.1007/s00284-021-02482-0.
  39. Włodarczyk-Makuła, M. (2012). Half-Life of Carcinogenic Polycyclic Aromatic Hydrocarbons in Stored Sewage Sludge. Archives of Environmental Protection 38. DOI:10.2478/v10265-012-0016-6.
  40. Wu, Y., He, T., Zhong, M., Zhang, Y., Li, E., Huang, T. & Hu, Z. (2009). Isolation of marine benzo[a]pyrene-degrading Ochrobactrum sp. BAP5 and proteins characterization. Journal of Environmental Sciences 21, pp. 1446–1451. DOI:10.1016/S1001-0742(08)62438-9.
  41. Wu, Y.-H., Xu, X.-W., Huo, Y.-Y., Zhou, P., Zhu, X.-F., Zhang, H.-B. & Wu, M. (2008). Halomonas caseinilytica sp. nov., a halophilic bacterium isolated from a saline lake on the Qinghai-Tibet Plateau, China. Int J Syst Evol Microbiol 58, pp. 1259–1262. DOI:10.1099/ijs.0.65381-0.
  42. Xiao-Ran, J., Jin, Y., Xiangbin, C. & Guo-Qiang, C. (2018). “Chapter Eleven - Halomonas and Pathway Engineering for Bioplastics Production,” in Methods in Enzymology, ed. N. Scrutton (Academic Press), pp. 309–328. DOI:10.1016/bs.mie.2018.04.008.
  43. Xu, L., Ying, J.-J., Fang, Y.-C., Zhang, R., Hua, J., Wu, M., Han, B-N. & Sun, C. (2021). Halomonas populi sp. nov. isolated from Populus euphratica. Arch Microbiol 204, 86. DOI:10.1007/s00203-021-02704-w.
  44. Ye, J.-W. & Chen, G.-Q. (2021). Halomonas as a chassis. Essays Biochem, 65(2), pp. 393-403. DOI:10.1042/EBC20200159.
  45. Yessica, G.-P., Alejandro, A., Ronald, F.-C., José, A. J., Esperanza, M.-R., Samuel, C.-S. J., Mendoza-Lopes, M.R & Ormeño-Orrillo, E. (2013). Tolerance, growth and degradation of phenanthrene and benzo[a]pyrene by Rhizobium tropici CIAT 899 in liquid culture medium. Applied Soil Ecology 63, pp. 105–111. DOI: 10.1016/j.apsoil.2012.09.010.
  46. Yin, J., Chen, J.-C., Wu, Q. & Chen, G.-Q. (2015). Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33, pp. 1433–1442. DOI:10.1016/j.biotechadv.2014.10.008.
Przejdź do artykułu

Autorzy i Afiliacje

Ajibola H. Okeyode
1
Assad Al-Thukair
1
Basheer Chanbasha
2 3
Mazen K. Nazal
4
Emmanuel Afuecheta
5 6
Musa M. Musa
2 7
ORCID: ORCID
Shahad Algarni
1
Alexis Nzila
1 3

  1. Department of Bioengineering, King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia,
  2. Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
  3. Interdisciplinary Research Center for Membranes and Water Security, King Fahd University ofPetroleum and Minerals, Dhahran, Saudi Arabia
  4. Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd Universityof Petroleum and Minerals, Dhahran, Saudi Arabia
  5. Departments of Mathematics, King Fahd University of Petroleum and Minerals, Dhahran 31261, SaudiArabia
  6. Interdisciplinary Research Center for Finance and Digital Economy, KFUPM, Dhahran, Saudi Arabia
  7. Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University ofPetroleum and Minerals, Dhahran 31261, Saudi Arabia
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Many paper-related products are in daily use all over the world. Although paper is one of the most recycled materials in the European Union, no end-of-waste criteria have been defi ned. Typical paper and cardboard should be recycled, but paper materials with impurities, such as cooking oil, sand, or plastic, are much more problematic. In particular, paper contaminated with cooking oil or butter (e.g., pizza boxes) is diffi cult waste. Also baking parchment paper cannot be stored as waste paper after use. Composting could be a solution, but in many municipal solid waste collection systems, this waste types are collected with the mixed waste stream, what fi nally leads this material to landfi lling or incinerating processes. Parchment paper and pizza box cardboard contain a lot of cellulose and in landfi lls are a source of CO2 and CH4. Incineration of these materials also leads to CO2 emission. The aim of this study was to investigate the degradation of cooking-oil-contaminated paper in media with a low inorganic nitrogen content. Cardboard usually used for packaging purposes was used as pre-test material. Two types of paper usually used in the kitchen were used: pizza box cardboard and parchment paper highly contaminated with cooking oil. Two types of low inorganic nitrogen media were tested: mature municipal waste compost (MSWC) and leaf mold (LM). The decrease of mass of both paper sample types was correlated with process time. Both tested sample types: dry cellulose materials and paper with cooking oil added, were partly or completely decomposed after 6 weeks of bioprocessing in aerobic conditions without an additional dose of inorganic nitrogen. According to waste separation rules, wet paper or paper contaminated with cooking oil have to be stored with other wastes which are „not possible for further use”. This work show possibility to change these rules.
Przejdź do artykułu

Bibliografia

  1. Agarwal, G., Liu, G. & Lattimer, G. (2014) Pyrolysis and Oxidation of Cardboard. Fire safety science-proceedings of the eleventh international symposium. pp. 124–137. DOI:10.3801/IAFSS. FSS.11-124
  2. Ahmed, S., Hall, A.M. & Ahmed, S.F. (2018) Biodegradation of Different Types of Paper in a Compost Environment. Proceedings of the 5th International Conference on Natural Sciences and Technology (ICNST’18) March 30–31, Asian University for Women, Chittagong, Bangladesh.
  3. Al-Mutairi, N. (2009) Co-composting of manure with fat, oil, and grease: Microbial fingerprinting and phytotoxicity evaluation. Can. J. Civ. Eng. 36(2) pp. 209–218. DOI:10.1139/L08-117
  4. Aluyor, E.O., Obahiagbon, K.O. & Ori-jesu, M. (2009) Biodegradation of vegetable oils: A review. Scientific Research and Essay, 4(6), pp. 543–54.
  5. Andlar, M., Rezic, T., Mardetko, M., Kracher, D., Ludwig, R. & Santek B. (2018) Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Engineering in Life Sciences, 18 pp. 768–778. DOI:10.1002/ elsc.201800039
  6. Balada, I., Altmann, V. & Šařec, P. (2016) Material waste paper recycling for the production of substrates and briquettes. Agronomy Research 14(3), pp. 661–671.
  7. Bekiroğlu, S., Elmas, G.M. & Yagshiyev, Y. (2017) Contribution to Sustainability and the National Economy Through Recycling Waste Paper from Istanbul’s Hotels in Turkey. BioResources, 12(4), pp. 6924–6955. DOI:10.15376/biores.12.4.6924-6955
  8. Bogaard, J. & Whitmore, P.M. (2002) Explorations of the role of humidity fluctuations in the deterioration of paper. Studies in Conservation, 47(3), pp. 11–15. DOI:10.1179/sic.2002.47.s3.003
  9. Borrego, S., Gómez de Saravia, S., Valdés, O., Vivar, I., Battistoni, P. & Guiamet, P. (2016) Biocidal activity of two essential oils on fungi that cause degradation of paper documents. International Journal of Conservation Science, 7(2), pp. 369–380.
  10. Cichosz, G. & Czeczot, H. (2011) Oxidative stability of edible fats – consequences to human health. Bromat. Chem. Toksykol. XLIV, 1, pp. 50–60
  11. Ciesielczuk, T., Poluszyńska, J., Rosik-Dulewska, Cz., Sporek, M. & Lenkiewicz, M. (2016). Uses of weeds as an economical alternative to processed wood biomass and fossil fuels. Ecological engineering, 95, pp. 485–491. DOI:10.1016/j.ecoleng.2016.06.100
  12. Cuvelier, M.E., Soto, P., Courtois, F., Broyart, B. & Bonazzi, C. (2017) Oxygen solubility measured in aqueous or oily media by a method using a non-invasive sensor. Food Control, 73, part 3, pp. 1466–1473. DOI:10.1016/j.foodcont.2016.11.008
  13. Franica, M., Grzeja, K. & Paszula, S. (2018) Evaluation of quality parameters of selected composts. Archives of Waste Management and Environmental Protection, 20(1), pp. 21–32.
  14. Ghehsareh, M.G., Khosh-Khui, M. & Nazari, F. (2011) Comparison of Municipal Solid Waste Compost, Vermicompost and Leaf Mold on Growth and Development of Cineraria (Pericallis × hybrida ‘Star Wars’). Journal of Applied Biological Sciences, 5 (3), 55–58.
  15. Gumienna, M., & Czarnecki, Z. (2010). The surface-active compounds of microbiological origin. Nauka Przyr. Technol., 4, 4, #51. (in Polish)
  16. Kaakinen, J., Vahaoja, P., Kuokkanen, T. & Roppola, K. (2007) Studies on the Effects of Certain Soil Properties on the Biodegradation of Oils Determined by the Manometric Respirometric Method. J. Automated Methods and Management in Chemistry, 034601. DOI:10.1155/2007/34601
  17. Karahan, S. (2020) Investigation of Recycling Possibilities of Stacked Waste Office Paper for at Least Five Years. GUSTIJ, 10(2) pp. 366 – 373. DOI:10.17714/gumusfenbil.606061
  18. Li, Z., Wrenn, B.A. & Venosa, A.D. (2005) Anaerobic biodegradation of vegetable oil and its metabolic intermediates in oil-enriched freshwater sediments. Biodegradation 16, pp. 341–352. DOI:10.1007/s10532-004-2057-6
  19. Micales, J.A., & Skog, K.E. (1997) The Decomposition of Forest Products in Landfills. International Biodeterioration & Biodegradation, 39, 2–3, pp. 145–158.
  20. Nowińska, A., Baranowska, J. & Malinowski, M. (2019) The analysis of biodegradation process of selected paper packaging waste. Infrastructure And Ecology Of Rural Areas 3, pp. 253–261. DOI:10.14597/INFRAECO.2019.3.1.018
  21. Osono, T. (2019) Functional diversity of ligninolytic fungi associated with leaf litter decomposition. Ecological Research, 35, pp.30–43. DOI:10.1111/1440-1703.12063
  22. Ozimek, A. & Kopeć, M. (2012). Assessment of biological activity of biomass at different stages of composting process with use of the oxitop control measurement system. Acta Agrophysica, 19(2), 379–390.
  23. Perez, J., Munoz-Dorado, J., Rubia, T. & d.l. Martınez, J. (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5 (2), pp. 53–63. DOI:10.1007/s10123-002- 0062-3
  24. Poluszyńska, J., Ciesielczuk, T., Biernacki, M. & Paciorkowski M. (2021) The effect of temperature on the biodegradation of different types of packaging materials under test conditions. Archives of Environmental Protection, 47(4), pp. 74–83. DOI:10.24425/aep.2021.139503
  25. Rajae, A., Ghita, A.B., Souabi, S., Winterton, P., Cegarra, J. & Hafidi M. (2008) Aerobic biodegradation of sludge from the effluent of a vegetable oil processing plant mixed with household waste: Physical–chemical, microbiological, and spectroscopic analysis. Bioresource technology, 99(18), pp. 8571–8577. DOI:10.1016/j. biortech.2008.04.007
  26. Saletes, S., Siregar, F.A., Caliman, J.P. & Liwang, T. (2004) Ligno- Cellulose Composting: Case Study on Monitoring Oil Palm Residuals. Compost Science & Utilization, 12(4), pp. 372–382. DOI:10.1080/1065657X.2004.10702207
  27. Salihu, I., Mohd, Y.S., Nur, A.Y. & Siti, A.A. (2018) Microbial degradation of vegetable oils: a review, 3, pp. 45–55.
  28. Smirnova. I.E. & Saubenova, M.G. (2001) Use of Cellulose- -Degrading Nitrogen-Fixing Bacteria in the Enrichment of Roughage with Protein. Applied Biochemistry and Microbiology, 37(1), pp. 76–79.
  29. Wan Razali, W.A., Baharuddin, A.S., Talib, A.T., Sulaiman, A., Naim, M.N., Hassan, M.A. & Shirai, Y. (2012) Degradation of oil palm empty fruit bunches (OPEFB) fibre during composting process using in-vessel composter. Bioresources, 7(4), pp. 4786–4805.
  30. Wołczyński, M. & Janosz-Rajczyk, M. (2014) Influence of Initial Alkalinity of Lignocellulosic Waste on Their Enzymatic Degradation. Archives of Environmental Protection, 40(2), pp. 103–113. DOI:10.2478/aep-2014-0019
Przejdź do artykułu

Autorzy i Afiliacje

Tomasz Ciesielczuk
1
ORCID: ORCID
Czesława Rosik-Dulewska
2
ORCID: ORCID

  1. Opole University, Poland
  2. Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The contamination of the environment by antibiotics has become a serious problem, supported by abundant scientific evidence of its negative impact on both aquatic ecosystems and human health. Therefore, it is crucial to intensify research efforts towards developing effective and efficient processes for removing antibiotics from the aquatic environment. In this study, a bacterial consortium capable of breaking down penicillin was employed in a ceramic separator microbial fuel cell (MFC) to generate electricity. The consortium’s properties such as laccase activity, penicillin removal and microbial structure were studied. The SF11 bacterial consortium, with a laccase activity of 6.16±0.04 U/mL, was found to be effective in breaking down penicillin. The highest rate of penicillin removal (92.15±0.27%) was achieved when the SF11 consortium was incubated at 30 °C for 48 hours. Furthermore, when used as a whole-cell biocatalyst in a low-cost upflow MFC, the Morganella morganii-rich SF11 consortium demonstrated the highest voltage and power density of 964.93±1.86 mV and 0.56±0.00 W/m3, respectively. These results suggest that the SF11 bacterial consortium has the potential for use in ceramic separator MFCs for the removal of penicillin and electricity generation.
Przejdź do artykułu

Bibliografia

[1]. Ahilan, V., Bhowmick, G.D., Ghangrekar, M.M., Wilhelm, M. & Rezwan, K. (2019). Tailoring hydrophilic and porous nature of polysiloxane derived ceramer and ceramic membranes for enhanced bioelectricity generation in microbial fuel cell, Inonics, 25, pp. 5907-5918. DOI:10.1007/s11581-019-03083-5
[2]. Ajayi, F.F. & Weigele, P.R. (2012). A terracotta bio-battery, Bioresource Technology, 116, pp. 86-91. DOI:10.1016/j.biortech.2012.04.019
[3]. Al-Dhabi, N.A., Esmail, G.A. & Arasu, M.V. (2021). Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrous-bed reactor, Chemosphere, 268, pp. 128726. DOI:10.1016/j.chemosphere.2020.128726
[4]. Ambika, A., Kumar, V., Jamwal, A., Kumar, V. & Singh, D. (2022). Green bioprocess for degradation of synthetic dyes mixture using consortium of laccase-producing bacteria from Himalayan niches, Journal of Environmental Management, 310, pp. 114764. DOI:10.1016/j.jenvman.2022.114764
[5]. Bhakta, J. & Munekage, Y. (2011). Mercury(II) Adsorption onto the magnesium oxide impregnated volcanic ash soil derived ceramic from aqueous phase, International Journal of Environmental Research, 5, pp. 585-594. DOI:10.22059/ijer.2011.365
[6]. Bhakta, J.N. & Munekage, Y. (2013). Identification of potential soil adsorbent for the removal of hazardous metals from aqueous phase, International Journal of Environmental Science and Technology, 10, pp. 315-324. DOI:10.1007/s13762-012-0116-9
[7]. Chaijak, P. & Michu, P. (2022). Modified water hyacinth biochar as a low-cost supercapacitor electrode for electricity generation from pharmaceutical wastewater, Polish Journal of Environmental Studies, 31, 6, pp. 5471-5475. DOI:10.15244/pjoes/150463
[8]. Chaijak, P. & Thipraksa, J. (2022). Improved performance of a novel-model laccase based microbial fuel cell (LB-MFC) with edible mushroom as a whole-cell biocatalyst, Polish Journal of Environmental Studies, 31, 5, pp. 4481-4485. DOI:10.15244/pjoes/147196
[9]. Chen, R., Zhang, Z., Feng, C., Lei, Z., Li, Y., Li, M., Shimizu, K. & Sugiura, N. (2010). Batch study of arsenate (V) adsorption using Akadama mud: Effect of water mineralization, Applied Surface Science, 256, 9, pp. 2961-2967. DOI:10.1016/j.apsusc.2009.11.058
[10]. Cheng, D., Ngo, H.H., Guo, W., Lee, D., Nghiem, D.L., Zhang, J., Liang, S., Varjani, S. & Wang, J. (2020). Performance of microbial fuel cell for treating swine wastewater containing sulfonamide antibiotics, Bioresource Technology, 311, pp. 123588. DOI:10.1016/j.biortech.2020.123588
[11]. Copete-Pertuz, L.S., Placido, J., Serna-Galvis, E.A., Torres-Palma, R.A. & Mora, A. (2018). Elimination of Isoxazolyl-Penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal, The Science of The Total Environment, 630, pp. 1195-1204. DOI:10.1016/j.scitotenv.2018.02.244
[12]. Das, I., Das, S., Dixit, R. & Ghangrekar, M.M. (2020). Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell, Ionics, 26, pp. 3061-3072. DOI:10.1007/s11581-020-03472-1
[13]. Ding, D., Lei, Z., Yang, Y. & Zhang, Z. (2014). Efficiency of transition metal modified akadama clay on cesium removal from aqueous solutions, Chemical Engineering Journal, 236, pp. 17-28. DOI:10.1016/j.cej.2013.09.075
[14]. Eliato, T.R., Pazuki, G. & Majidian, N. (2016). Potassium permanganate as an electron receiver in a microbial fuel cell, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 5, pp. 644-651. DOI:10.1080/15567036.2013.818079
[15]. Feng, L., Casas, M.E., Ottosen, L.D.M., Moller, H.B. & Bester, K. (2017). Removal of antibiotics during the anaerobic digestion of pig manure, Science of The Total Environment, 603-604, pp. 219-225. DOI:10.1016/j.scitotenv.2017.05.280
[16]. Garcia, D., Posadas, E., Grajeda, C., Blanco, S., Martinez-Paramo, S., Acien, G., Garcia-Encina, P., Bolado, S.  Munoz, R. (2017). Comparative evaluation of piggery wastewater treatment in algal-bacterial photobioreactors under indoor and outdoor conditions, Bioresource Technology, 245, pp. 483-490. DOI:10.1016/j.biortech.2017.08.135
[17]. Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W. & Tesfahunegn, A.A. (2020). Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresource Technology, 296, pp. 122350. DOI:10.1016/j.biortech.2019.122350
[18]. Ghadge, A.N. & Ghangrekar, M.M. (2015). Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells, Electrochimica Acta, 166, 1, pp. 320-328. DOI:10.1016/j.electacta.2015.03.105
[19]. Ghadge, A.N., Jadhav, D.A. & Ghangrekar, M.M. (2016). Wastewater treatment in pilot-scale microbial fuel cell using multielectrode assembly with ceramic separator suitable for field applications, Environmental Progress & Sustainable Energy, 35, 6, pp. 1809-1817. DOI:10.1002/ep.12403
[20]. Ghadge, A.N., Sreemannarayana, M., Duteanu, N. & Ghangrekar, M.M. (2014). Influence of ceramic separator’s characteristics on microbial fuel cell performance, Electrochemical Engineering, 4, 4, pp. 315-326. DOI:10.5599/jese.2014.0047
[21]. Ghasemi, M., Daud, W.R.W., Ismail, M., Rahimnejad, M., Ismail, A.F., Leong, J.X., Miskan, M. & Liew, K.B. (2013). Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance, International Journal of Hydrogen Energy, 38, 13, pp. 5480-5484. DOI:10.1016/j.ijhydene.2012.09.148
[22]. Goto, Y. & Yoshida, N. (2019). Scaling up microbial fuel cells for treating swine wastewater. Water, 11, 9, pp. 1803. DOI:10.3390/w11091803
[23]. Guang, L., Koomson, D.A., Jingyu, H., Ewusi-Mensah, D. & Miwornunyuie, N. (2020). Performance of exoelectrogenic bacteria used in microbial desalination cell technology, International Journal of Environmental Research and Public Health, 17, 3, 1, pp. 1121. DOI:10.3390/ijerph17031121
[24]. He, L.Y., Ying, G.G., Liu, Y.S., Su, H.C., Chen, J., Liu, S.S. & Zhao, J.L. (2016). Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments, Environment International, 92-93, pp. 210-219. DOI:10.1016/j.envint.2016.03.023
[25]. Jahan, N., Tahmid, M., Shoronika, A.Z., Fariha, A., Roy, H., Pervez, M.N., Cai, Y., Naddeo, V. & Islam, M.S. (2022). A comprehensive review on the sustainable treatment of textile wastewater: Zero liquid discharge and resource recovery perspectives, Sustainability, 14, pp. 15398. DOI:10.3390/su142215398
[26]. Ji, M., Su, X., Zhao, Y., Qi, W., Wang, Y., Chen, G. & Zhang, Z. (2015). Effective adsorption of Cr(VI) on mesoporous Fe-functionalized Akadama clay: optimization, selectivity, and mechanism, Applied Surface Science, 344, pp. 128-136. DOI:10.1016/j.apsusc.2015.03.006
[27]. Kim, D.P., Saegerman, C., Douny, C., Dinh, T.V., Xuan, B.H., Vu, B.D., Hong, N.P. & Scippo, M.L. (2013). First survey on the use of antibiotics in pig and poultry production in the Red River Delta Region of Vietnam, Food and Public Health, 3, 5, pp. 247-256. DOI:10.5923/j.fph.20130305.03
[28]. Kim, M., Song, Y.E., Li, S. & Kim, J.R. (2021). Microwave-treated expandable graphite granule for bioelectricity generation of microbial fuel cells, Journal of Electrochemical Science and Technology, 12, 3, pp. 297-301. DOI:10.33961/jecst.2020.01739
[29]. Kim, T., An, J., Jang, J.K. & Chang, I.S. (2020). Determination of optimum electricity connection mode for multi-electrode-embedded microbial fuel cells coupled with anaerobic digester for enhancement of swine wastewater treatment efficiency and electricity recover, Bioresource Technology, 297, pp. 122464. DOI:10.1016/j.biortech.2019.122464
[30]. Krasnikova, A.V. & Iozep, A.A. (2003). Structure of chemical compounds, Methods of analysis and process control, Pharmaceutical Chemistry Journal, 37, 9, pp. 504.
[31]. Kusada, H., Zhang, Y., Takami, H., Kimura, N. & Kamagata, Y. (2019). Novel N-Acyl Homoserine lactone-degrading bacteria isolated from penicillin-contaminated environments and their quorum-quenching activities, Frontiers in Microbiology, 10, pp. 445, 2019. DOI:10.3389/fmicb.2019.00455
[32]. Li, H., Xu, H., Yang, Y.L., Yang, X.L., Wu, Y., Zhang, S. & Song, H.L. (2019). Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland, Water Research, 165, pp. 114988. DOI:10.1016/j.watres.2019.114988
[33]. Liu, F., Sun, L., Wan, J., Shen, L., Yu, Y., Hu, L. & Zhou, Y. (2020). Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process, Journal of Environmental Science (China), 89, pp. 252-263. DOI:10.1016/j.jes.2019.08.015
[34]. Masse, D.I., Lu, D., Masse, L. & Droste, R.L. (2000). Effect of antibiotics on psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors. Bioresource Technology, 75, 3, pp. 205-211. DOI:10.1016/S0960-8524(00)00046-8
[35]. Michu, P. & Chaijak, P. (2022). Electricity generation and winery wastewater treatment using silica modified ceramic separator integrated with yeast-based microbial fuel cell, Communication in Science and Technology, 7, 1, pp. 98-102. DOI:10.21924/cst.7.1.2022.799
[36]. More, S.S., Renuka, P.S., Pruthvi, K., Swetha, M., Malini, S. & Veena, S.M. (2011). Isolation, purification, and characterization of fungal laccase from Pleurotus sp., Enzyme Research, 2011, pp. 248735. DOI:10.4061/2011/248735
[37]. Mukhopadhyay, D., Khan, N., Kamal, N., Varjani, S., Singh, S., Sindhu, R., Gupta, P. & Bhargava, P.C. (2022). Degradation of beta-lactam antibiotic ampicillin using sustainable microbial peroxide producing cell system, Bioresource Technology, 361, pp. 127605. DOI:10.1016/j.biortech.2022.127605
[38]. Nguyen, T.T., Soda, S., Kanayama, A. & Hamai, T. (2021). Effects of cattails and hydraulic loading on heavy metal removal from closed mine drainage by pilot-scale constructed wetlands, Water, 13, 14, pp. 1937. DOI:10.3390/w13141937
[39]. Ni, H., Wang, K., Lv, S., Wang, X., Zhuo, L. & Zhang, J. (2020). Effects of Concentration Variations on the Performance and Microbial Community in Microbial Fuel Cell Using Swine Wastewater, Energies, 13, 9, pp. 2231. DOI:10.3390/en13092231
[40]. Piontek, K., Antorini, M. & Choinowski, T. (2002). Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers, Journal of Biological Chemistry, 277, 40, pp. 37663. DOI:10.1074/jbc.M204571200
[41]. Portis, E., Lindeman, C., Johansen, L. & Stoltman, G. (2012). A ten-year (2000-2009) study of antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex--Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni--in the United States and Canada. Journal of Veterinary Diagnostic Investigation, 24, 5, pp. 932-944. DOI:10.1177/1040638712457559
[42]. Prosekov, A.Y.  Ivanova, S.A. (2018). Food security: The challenge of the present, Geoforum, 91, 1, pp. 73-77. DOI:10.1016/j.geoforum.2018.02.030
[43]. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A. & Oh, S.E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal, 54, 3, pp. 745-756. DOI:10.1016/j.aej.2015.03.031
[44]. Rahimnejad, M., Ghoreyshi, A.A., Najafpour, G. & Jafary, T. (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations, Applied Energy, 88, 11, pp. 3999-4004. DOI:10.1016/j.apenergy.2011.04.017
[45]. Rahman, T.U., Roy, H., Islam, M.R., Tahmid, M., Fariha, A., Mazumder, A., Tasnim, N., Pervez, M.N., Cai, Y., Naddeo, V. & Islam, M.S. (2022). The advancement in membrane reactor (MBR) technology toward sustainable industrial wastewater management, Membranes, 13, pp. 181. DOI:10.3390/membranes13020181
[46]. Ren, B., Wang, T. & Zhao, Y. (2021). Two-stage hybrid constructed wetland-microbial fuel cells for swine wastewater treatment and bioenergy generation, Chemoshpere, 268, pp. 128803. DOI:10.1016/j.chemosphere.2020.128803
[47]. Rossi, R., Jones, D., Myung, J., Zikmund, E., Yang, W., Gallego, Y.A., Pant, D., Evans, P.J., Page, M.A., Cropek, D.M. & Logan, B.E. Evaluating a multi-panel air cathode through electrochemical and biotic tests, Water Research, 148, pp. 51-59. DOI:10.1016/j.watres.2018.10.022
[48]. Santos, F., Almeida, C.M.R., Ribeiro, I. & Mucha, A.P. (2019). Potential of constructed wetland for the removal of antibiotics and antibiotic resistant bacteria from livestock wastewater, Ecological Engineering, 129, pp. 45-53. DOI:10.1016/j.ecoleng.2019.01.007
[49]. Shang, S., Fan, H., Li, Y., Li, L. & Li, Z. (2022). Preparation of lightweight ceramsite from solid waste using SiC as a foaming agent, Materials (Basel), 15, 1, pp. 325. DOI:10.3390/ma15010325
[50]. Sekyere, J.O. (2014). Antibiotic types and handling practices in disease management among pig farms in Ashanti region, Ghana, Journal of Veterinary Medicine, 2014, pp. 531952. DOI:10.1155/2014/531952
[51]. Subha, C., Kavitha, S., Abisheka, S., Tamilarasan, K., Arulazhagan, P. & Banu, J.R. (2019). Bioelectricity generation and effect studies from organic rich chocolaterie wastewater using continuous upflow anaerobic microbial fuel cell, Fuel, 251, pp. 224-232. DOI:10.1016/j.fuel.2019.04.052
[52]. Sun, W., Gu, J., Wang, X., Qian, X. &Peng, H. (2019). Solid-state anaerobic digestion facilitates the removal of antibiotic resistance genes and mobile genetic elements from cattle manure, Bioresource Technology, 274, pp. 287-295. DOI:10.1016/j.biortech.2018.09.013
[53]. Sunder, A.V., Utari, P.D., Ramasamy, S., Van Merkerk, R., Quax, W. & Pundle, A. (2017). Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa, Applied Microbiology and Biotechnology, 101, 6, pp. 2383-2395. DOI:10.1007/s00253-016-8031-5
[54]. Thipraksa, J. & Chaijak, P. (2022). Improved the coconut shell biochar properties for bio-electricity generation of microbial fuel cells from synthetic wastewater, Journal of Degraded and Mining Lands Management, 9, 4, pp. 3613-3619.
[55]. Thipraksa, J., Chaijak, P., Michu, P. & Lertworapreecha, M. (2022). Biodegradation and electricity generation of melanoidin in palm oil mill effluent (POME) by laccase-producing bacterial consortium integrated with microbial fuel cell, Biocatalysis and Agricultural Biotechnology, 43, pp. 102444. DOI:10.1016/j.bcab.2022.102444
[56]. Tsai, W.T. (2018). Regulatory promotion and benefit analysis of biogas-power and biogas-digestate from anaerobic digestion in Taiwan’s livestock industry, Fermentation, 4, 3, pp. DOI:10.3390/fermentation4030057
[57]. Vogel, G., Nicolet, J., Martig, J., Tschudi, P. & Meylan, M. (2001). Pneumonia in calves: characterization of the bacterial spectrum and the resistance patterns to antimicrobial drugs, Schweizer Archiv fur Tierheilkunde, 143, 7, pp. 341-350.
[58]. Wang, S., Ma, X., Wang, Y., Du, G. &Tay, J.H. (2019). Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport, Bioresource Technology, 273, pp. 350-357. DOI:10.1016/j.biortech.2018.11.023
[59. Xu, F., Ouyang, D.L., Rene, E.R., Ng, H.Y., Guo, L.L., Zhu, Y.J., Zhou, L.L., Yuan, Q., Miao, M.S., Wang, Q. & Kong, Q. (2019). Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater, Bioresource Technology, 288, pp. 121462. DOI:10.1016/j.biortech.2019.121462
[60]. Yan, R., Wang, Y., Li, J., Wang, X. & Wang, Y. (2022). Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter, Journal of Hazardous Materials, 425, pp. 127764. DOI:10.1016/j.jhazmat.2021.127764
[61]. Yousefi, V., Mohebbi-Kalhori, D. & Samimi, A. (2017). Ceramic-based microbial fuel cells (MFCs): A review. International Journal of Hydrogen Energy, 42, 3, pp. 1672-1690. DOI:10.1016/j
.ijhydene.2016.06.054
[62]. Zhang, D., Wang, X.  Zhou, Z. (2017). Impacts of small-scale industrialized swine farming on local soil, water and crop qualities in a hilly red soil region of subtropical China. International Journal of Environmental Research and Public Health, 14, 12, pp. 1524. DOI:10.3390/ijerph14121524
[63]. Zhang, Y., Zhao, Y. & Zhou, M. (2019). A photosynthetic algal microbial fuel cell for treating swine wastewater, Environmental Science and Pollution Research, 26, 6182-6190. DOI:10.1007/s11356-018-3960-4

Przejdź do artykułu

Autorzy i Afiliacje

Pimprapa Chaijak
1
ORCID: ORCID
Alisa Kongthong
1
ORCID: ORCID
Junjira Thipraksa
1
ORCID: ORCID
Panisa Michu
1
ORCID: ORCID

  1. Thaksin University, Thailand

Abstrakt

As polycarbonate is frequently used in many products, its accumulation in landfi lls is absolutely harmful to the environment. The aims of this study were the screening and isolation of polycarbonate-degrading bacteria (PDB) and the assessment of their ability in the degradation of polycarbonate (PC) polymers. Nine-month buried-PC films were used for PDB isolation and identification. The biodegradation ability of the isolates was determined by growth curve, clear zone formation, lipase and amylase production, AFM and FTIR. Bacillus cereus and Bacillus megaterium were identifi ed and considered as PDB. The degradation ability of B. megaterium was significantly higher than that of B. cereus. Both were lipase and amylase positive. AFM and FTIR results showed the initiation of bacterial attachment. The PC biodegradation ability of isolates can be very efficient. Finding such efficient isolates (which was less studied before) will promise a decrease in plastic contamination in the future.
Przejdź do artykułu

Autorzy i Afiliacje

Mojgan Arefian
1
Arezoo Tahmourespour
2
Mohammadali Zia
2

  1. Fars Science and Research Branch, Islamic Azad University, Fars, Iran
  2. Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

Abstrakt

The research was intended to develop a biocomposite as an alternative biodegradable material, for the production of, e.g., disposable utensils. The author’s tested thermoplastic maize starch, both without additives and with the addition of crumbled fl ax fi ber in the share of 10, 20 and 30 wt%. The plasticizer added was technical glycerin and the samples were produced by a single-screw extruder. The mechanical strength tests were performed, including the impact tensile test and three-point bending fl exural test. Afterwards, the samples were tested for biodegradability under anaerobic conditions. The methane fermentation process was carried in a laboratory bioreactor under thermophilic conditions with constant mixing of the batch. All samples proved to be highly susceptible to biodegradation during the experiment, regardless of the fl ax fi ber share. The biogas potential was about 600 ml·g-1, and the methane concentration in biogas ranged from 66.8 to 69.6%. It was found, that the biocomposites can be almost completely utilized in bioreactors during the biodegradation process. The energy recovery in the decomposition process with the generation of signifi cant amount of methane constitutes an additional benefi t.

Przejdź do artykułu

Autorzy i Afiliacje

Gabriel Borowski
1
ORCID: ORCID
Tomasz Klepka
2
Małgorzata Pawłowska
1
Maria Cristina Lavagnolo
3
Tomasz Oniszczuk
4
Agnieszka Wójtowicz
4
Maciej Combrzyński
4

  1. Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
  2. Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
  3. Department of Civil Environmental and Architectural Engineering, University of Padova, Italy
  4. Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The constructed wetland integrated with microbial fuel cell (CW-MFC) has gained attention in wastewater treatment and electricity generation owing to its electricity generation and xenobiotic removal efficiencies. This study aims to use the CW-MFC with different macrophytes for domestic wastewater treatment and simultaneously electricity generation without chemical addition. The various macrophytes such as Crinum asiaticum, Canna indica, Hanguana malayana, Philodendron erubescens, and Dieffenbachia seguine were used as a cathodic biocatalyst. The electrochemical properties such as half-cell potential and power density were determined. For wastewater treatment, the chemical oxygen demand (COD) and other chemical compositions were measured. The results of electrochemical properties showed that the maximal half-cell potential was achieved from the macrophyte D. seguine. While the maximal power output of 5.42±0.17 mW/m2 (7.75±0.24 mW/m3) was gained from the CW-MFC with D. seguine cathode. Moreover, this CW-MFC was able to remove COD, ammonia, nitrate, nitrite, and phosphate of 94.00±0.05%, 64.31±0.20%, 50.02±0.10%, 48.00±0.30%, and 42.05±0.10% respectively. This study gained new knowledge about using CW-MFC planted with the macrophyte D. seguine for domestic wastewater treatment and generation of electrical power as a by-product without xenobiotic discharge.
Przejdź do artykułu

Bibliografia

  1. Almeida-Naranjo, C.E, Guachamin, G., Guerrero, V.H. & Villamar, C.V. (2020). Heliconia stricta hubber behavior on hybrid constructed wetlands fed with synthetic domestic wastewater. Water, 12, 5, pp. 1373. DOI:10.3390/w12051373
  2. APHA AWWA WEF (2005). Standard methods for the examination of water and wastewater. American Public Health Association, Washington 2005.
  3. Araneda, I., Tapia, N.F., Allende, K.L. & Vargas, I.T. (2018). Constructed wetland-microbial fuel cell for sustainable greywater treatment. Water, 10, 7, pp. 940. DOI:10.3390/w10070940
  4. Bracher, G.H., Carissmi, E., Wolff, D.B., Graepin, C. & Hubner, A.P. (2020). Optimization of an electrocoagulation-flotation system for domestic wastewater treatment and reuse. Environmental Technology, 42, 17, pp. 2669-2679. DOI:10.1080/09593330.2019.1709905
  5. Chaijak, P., Lertworapreecha, M., Changkit, N. & Sola, P. (2022). Electricity generation from hospital wastewater in microbial fuel cell using radiation tolerant bacteria. Biointerface Research in Applied Chemistry, 12, 4, pp. 5601-5609. DOI:10.33263/BRIAC124.56015609
  6. Chaijak, P., Sukkasem, C., Lertworapreecha, M., Boonsawang, P., Wijasika, S. & Sato, C. (2018). Enhancing electricity generation using a laccase-based microbial fuel cell with yeast Galactomyces reessii on the cathode. Journal of Microbiology and Biotechnology, 28, 8, pp. 1360-1366. DOI:10.4014/jmb.1803.03015
  7. Corbella, C. & Puigagut, J. (2018). Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance. Science of the Total Environment, 631-632, 1, pp. 1406-1414. DOI:10.1016/j.scitotenv.2018.03.084
  8. Das, B., Gaur, S.S., Katha, A.R., Wang, C.T. & Katiyar, V. (2021). Crosslinked poly(vinyl alcohol) membrane as separator for domestic wastewater fed dual chambered microbial fuel cells. International Journal of Hydrogen Energy, 46, 10, pp. 7073-7086. DOI:10.1016/j.ijhydene.2020.11.213
  9. Dincer, I. & Siddiqui, O. (2020). Ammonia fuel cells, Elsevier, Amsterdam 2020.
  10. Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W.. & Tesfahunegn, A.A. (2020). Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresour Technol, 296, pp.122350. DOI:10.1016/j.biortech.2019.122350
  11. Guadarrama-Perez, O., Bahena-Rabadan, K., Dehesa-Carrasco, U., Perez, V.H.G. & Estrada-Arriaga, E.B. (2020). Bioelectricity production using macrophytes in constructed wetland-microbial fuel cells. Environmental Technology, 2020. DOI:10.1080/09593330.2020.1841306
  12. Han, J.L., Yang, Z.N., Wang, H., Zhou, H.Y., Xu, D., Yu, S. & Gao, L. (2021). Decomposition of pollutants from domestic sewage with the combination system of hydrolytic acidification coupling with constructed wetland microbial fuel cell. Journal of Cleaner Production, 319, 1, pp. 128650. DOI:10.1016/j.jcliepro.2021.128650
  13. Ho, V.T.T., Dang, M.P., Lien, L.T., Huynh, T.T., Hung, T.V. & Bach, L.G. (2020). Study on domestic wastewater treatment of the horizontal subsurface flow wetlands (HSSF-CWs) using Brachiaria mutica. Waste and Biomass Valorization, 11, 10, pp. 5627-5634. DOI:10.1007/s12649-020-01084-4
  14. Karla, M.R., Alejandra, V.A.C., Lenys, F. & Patricio, E.M. (2022). Operational performance of corncobs/sawdust biofilters coupled to microbial fuel cells treating domestic wastewater. Science of the Total Environment, 809, 1, pp. 151115. DOI:10.1016/j.scitotenv.2021.151115
  15. Kim, M., Song, Y.E., Li, S. & Kim, J.R. (2021). Microwave-treated expandable graphite granule for enhancing the bioelectricity generation of microbial fuel cells. Journal of Electrochemical Science and Technology, 12, 3, pp. 297-301. DOI:10.33961/jecst.2020.01739
  16. Klimsa, L., Melcakova, I., Novakova, J., Bartkova, M., Hlavac, A., Krakovska, A., Dombek, V. & Andras, P. (2020). Recipient pollution caused by small domestic wastewater treatment plants with activated sludge. Carpathian Journal of Earth and Environmental Science, 15, 1, pp. 19-25. DOI:10.26471/cjees/2020/015/104
  17. Libecki, B. & Mikolajczyk, T. (2021). Phosphorus removal by microelectrolysis and sedimentation in the integrated devices. Archives of Environmental Protection, 47, 1, pp. 3-9. DOI:10.24425/aep.2021.136442
  18. Moondra, N., Jariwala, N.D. & Christian, R.A. (2020). Sustainable treatment of domestic wastewater through microalgae. International Journal of Phytoremediation, 22, 14, pp. 1480-1486. DOI:10.1080/15226514.2020.1782829
  19. Nhut, H.T., Hung, N.T.Q., Sac, T.C., Bang, N.H.K., Tri, T.Q., Hiep, N.T. & Ky, N.M. (2020). Removal of nutrients and pollutants from domestic wastewater treatment by sponge-based moving bed biofilm reactor. Environmental Engineering Research, 25, 5, pp. 652-658. DOI:10.4491/eer.2019.285
  20. Ni, J., Steinberger-Wilckens, R. & Wang, O.H. (2021). Simultaneous domestic wastewater treatment and electricity generation in microbial fuel cell with Mn(IV) oxide addition. Chemistry Select, 6, 3, pp.369-375. DOI:10.1002/slct.202004680
  21. Pasquini, L., Munoz, J.F., Pons, M.N., Yvon, J., Dauchy, X., France, X., Le, N.D., France-Lanord, C. & Gorner, T. (2014). Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant. Statistical evaluation. The Science of the Total Environment, 481, 1, pp. 456-468. DOI:10.1016/j.scitotenv.2014.02.075
  22. Rajasulochana, P. & Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies, 2, 4, pp.175-184. DOI:10.1016/j.reffit.2016.09.004
  23. Shukla, R., Gupta, D., Singh, G. & Mishra, V.K. (2021). Performance of horizontal flow constructed wetland for secondary treatment of domestic wastewater in a remote tribal area of Central India. Sustainable Environment Research, 31, 1, pp. 13. DOI:10.1186/s42834-021-00087-7
  24. Vega de Lille, M.I., Hernandez Cardona, M.A., Tzakum Xicum, Y.A., Giacoman-Vallejos, G. & Quintal-Franco, C.A. (2021). Hybrid constructed wetlands system for domestic wastewater treatment under tropical climate: Effect of recirculation strategies on nitrogen removal. Ecological Engineering, 166, 1, pp.106243. DOI:10.1016/j.ecoleng.2021.106243
  25. Vo, N.X.P., Hoang, D.D.N., Huu, T.D., Van, T.D., Thanh, H.L.P. & Xuan, Q.V.N. (2021). Performance of vertical up-flow-constrcuted wetland integrating with microbial fuel cell (VFCW-MFC) treating ammonium in domestic wastewater. Environment Technology, 1, 1, pp. 1-16. DOI:10.1080/09593330.2021.2014574
  26. Wang, J.F., Song, X.S., Wang, Y.H., Bai, J.H., Li, M.J., Dong, G.Q., Lin, F.D., Lv, Y.F. & Yan, D.H. (2017). Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophyte. Science of the Total Environment, 607, 1, pp. 53-62. DOI: 10.1016/j.scitotenv.2017.06.243
  27. Xie, T., Jing, Z., Hu, J., Yuan, P., Liu, Y.L. & Cao, S.W. (2018). Degradation of nitrobenzene-containing wastewater by a microbial fuel cell coupled constructed wetland. Ecological Engineering, 112, 1, pp. 65-71. DOI:10.1016/j.ecoleng.2017.12.018
  28. Xu, F., Cao, F.Q., Kong, Q., Zhou, L.I., Yuan, Q., Zhu, Y.J., Wang, Q., Du, Y.D. & Wang, Z.D. (2018). Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chemical Engineering Journal, 339, pp. 476-486. DOI:10.1016/j.cej.2018.02.003
  29. Yang, S.L., Zheng, Y.F., Mao, Y.X., Xu, L., Jin, Z., Zhao, M., Kong, H.N., Huang, X.F. & Zheng, X.Y. (2021). Domestic wastewater treatment for single household via novel subsurface wastewater infiltration systems (SWISs) with NiiMi process: Performance and microbial community. Journal of Cleaner Production, 279, 1, pp. 123434. DOI:10.1016/j.jclepro.2020.123434
  30. Zhang, D.Q., Jinadasa, K.B.S.N., Gersberg, R.M., Liu, Y., Tan, S.K. & Ng, W.J. (2015). Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013). Journal of Environmental Sciences, 30, 1, pp. 30-46. DOI:10.1016/j.jes.2014.10.013
Przejdź do artykułu

Autorzy i Afiliacje

Pimprapa Chaijak
1
ORCID: ORCID
Phachirarat Sola
2

  1. Thaksin University, Thailand
  2. Thailand Institute of Nuclear Technology (Public Organization) (TINT), Thailand

Abstrakt

This paper deals with the issue of using moulding sands with a new two-component binder: furfuryl-resole resin – PCL polycaprolactone for the production of ductile iron heavy castings. The previous laboratory studies showed the possibility of using biodegradable materials as binders or parts of binders’ compositions for foundry moulding and core sands. The research proved that addition of new biodegradable PCL in the amount of 5% to the furfuryl-resole resin does not cause significant changes in moulding sand’s properties. The article presents research related to the production of ductile iron castings with the use of moulds with a modified composition, i.e. sands with furfuryl resole resin with and without PCL. Mechanical properties and microstructure of the casting surface layer at the metal/ mould interface are presented. The obtained test results indicate that the use of a biodegradable additive for making foundry moulds from moulding sand with a two-component binder does not deteriorate the properties of ductile iron castings.
Przejdź do artykułu

Autorzy i Afiliacje

M. Hosadyna-Kondracka
1
ORCID: ORCID
K. Major-Gabryś
2
ORCID: ORCID
M. Warmuzek
1
ORCID: ORCID
M. Brůna
3
ORCID: ORCID

  1. Lukasiewicz Research Network – Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Krakow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Foundry of Non-ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  3. University of Žilina, Department of Technological Engineering, Faculty of Mechanical Engineering, Univerzitná 1, 010 26, Slovak Republic

Abstrakt

In this study, microstructure, mechanical, corrosion and corrosive wear properties of Mg-xAg the as-cast and extruded alloys (x: 1, 3 and 5 wt. % Ag) were investigated. According to the experimental results, as the amount of Ag added in the casting alloys increases, the secondary phases (Mg4Ag, Mg54Ag17) emerging in the structure have become more clarified. Furthermore, it was observed that as the amount of Ag increased, the grain size decreased and thus the mechanical properties of the alloys increased. Similarly, the extrusion process enabled the grains to be refined and the mechanical properties to be increased. As a result of the in vitro tests performed, the Mg-1Ag exhibited very bad corrosion properties compared to other alloys. On the other hand, according to corrosive wear tests results, a high wear rate and friction coefficient were found for Mg-5Ag alloys.
Przejdź do artykułu

Autorzy i Afiliacje

Levent Elen
1
ORCID: ORCID
Yunus Turen
2
ORCID: ORCID
Hayrettin Ahlatci
2
ORCID: ORCID
Yavuz Sun
2
ORCID: ORCID
Mehmet Unal
3
ORCID: ORCID

  1. Karabuk University, TOBB Vocational School of Technical Sciences, Machinery and Metal Technologies Department, Karabuk, Turkey
  2. Karabuk University, Metallurgical and Materials Engineering, Faculty of Engineering, Turkey
  3. Karabuk University, Manufacturing Engineering, Technology Faculty, Turkey

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji