Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

To find effective and practical methods to distinguish gas-liquid two-phase flow patterns, new flow pattern maps are established using the differential pressure through a classical Venturi tube. The differential pressure signal was first decomposed adaptively into a series of intrinsic mode functions (IMFs) by the ensemble empirical mode decomposition. Hilbert marginal spectra of the IMFs showed that the flow patterns are related to the amplitude of the pressure fluctuation. The cross-correlation method was employed to sift the characteristic IMF, and then the energy ratio of the characteristic IMF to the raw signal was proposed to construct flow pattern maps with the volumetric void fraction and with the two-phase Reynolds number, respectively. The identification rates of these two maps are verified to be 91.18% and 92.65%. This approach provides a cost-effective solution to the difficult problem of identifying gas-liquid flow patterns in the industrial field.

Go to article

Authors and Affiliations

Zhiqiang Sun
Luyang Chen
Fengyan Yao
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we investigate a problem on reflection and transmission of plane-waves at an interface between two dissimilar half-spaces of a transversely isotropic micropolar piezoelectric material. The entire model is assumed to rotate with a uniform angular velocity. The governing equations of rotating and transversely isotropic micropolar piezoelectric medium are specialized in a plane. Plane-wave solutions of two-dimensional coupled governing equations show the possible propagation of three coupled plane-waves. For an incident plane-wave at an interface between two dissimilar half-spaces, three reflected and three transmitted waves propagate with distinct speeds. The connections between the amplitude ratios of reflected and transmitted waves are obtained. The expressions for the energy ratios of reflected and transmitted waves are also obtained. A numerical example of the present model is considered to illustrate the effects of rotation on the speeds and energy ratios graphically.
Go to article

Authors and Affiliations

Baljeet Singh
1
Asha Sangwan
2
Jagdish Singh
3

  1. Department of Mathematics, Post Graduate Government College, Sector 11, Chandigarh, 160011, India
  2. Department of Mathematics, Government College, Sampla, Rohtak, 124001, Haryana, India
  3. Department of Mathematics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India

This page uses 'cookies'. Learn more