Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 38
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Electrical circuits with state-feedbacks are addressed. It is shown that by suitable choice of the gain matrices of state-feedbacks it is possible to obtain the closed-loop system matrices with nilpotency indices equal to two and their state variables are linear functions of time. The considerations are illustrated by linear electrical circuits.

Go to article

Authors and Affiliations

Tadeusz Kaczorek
Download PDF Download RIS Download Bibtex

Abstract

The analysis of the positivity and stability of linear electrical circuits by the use of state-feedbacks is addressed. Generalized Frobenius matrices are proposed and their properties are investigated. It is shown that if the state matrix of an electrical circuit has generalized Frobenius form then the closed-loop system matrix is not positive and asymptotically stable. Different cases of modification of the positivity and stability of linear electrical circuits by state-feedbacks are discussed and necessary conditions for the existence of solutions to the problem are established.

Go to article

Authors and Affiliations

Tadeusz Kaczorek
Download PDF Download RIS Download Bibtex

Abstract

The In this paper stabilisation problem of LC ladder network is established. We studied the following cases: stabilisation by inner

resistance, by velocity feedback and stabilisation by dynamic linear feedback, in particularly stabilisation by first range dynamic feedback. The global asymptotic stability of the respectively system is proved by LaSalle’s theorem. In the proof the observability of the dynamic system plays an essential role. Numerical calculations were made using the Matlab/Simulink program.

Go to article

Authors and Affiliations

W. Mitkowski
Download PDF Download RIS Download Bibtex

Abstract

The global (absolute) stability of nonlinear systems with negative feedbacks and positive descriptor linear parts is addressed. Transfer matrices of positive descriptor linear systems are analyzed. The characteristics u = f(e) of the nonlinear parts satisfy the condition
ke  ≤ f(e) ≤ ke for some positive k, k. It is shown that the nonlinear feedback systems are globally asymptotically stable if the Nyquist plots of the positive descriptor linear parts are located in the right-hand side of the circles (–¹/k₁,  –¹/k₂).

Go to article

Authors and Affiliations

T. Kaczorek
Download PDF Download RIS Download Bibtex

Abstract

The observation inflation effect consists in the fact that observing an action being performed can create false memories that this action has actually been performed by the observer. The present study examined the relationship between this effect and interrogative suggestibility. A procedure based on the Gudjonsson Suggestibility Scale was used to assess two kinds of suggestibility: the tendency to yield to suggestive questions (Yield) and the tendency to change answers after feedback (Shift). The participants first watched a film depicting a woman performing simple activities and performed various activities themselves during the film. In order to determine whether the observation inflation effect occurred, the participants performed a source-monitoring test. The observation inflation effect was replicated. Observation inflation correlated positively with Yield but not with Shift. This pattern of results can be explained by the fact these two indicators are different aspects of interrogative suggestibility. Shift is more related to social influence, while Yield is more cognitive in its nature.

Go to article

Authors and Affiliations

Magdalena Kękuś
Regina Dziubańska
Iga Komęza
Iwona Dudek
Klaudia Chylińska
Malwina Szpitalak
ORCID: ORCID
Romuald Polczyk
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the experimental results of a new proof mass actuator for the implementation of velocity feedback control loops to reduce the flexural vibration of a thin plate structure. Classical proof mass actuators are formed by coil–magnet linear motors. These actuators can generate constant force at frequencies above the fundamental resonance frequency of the spring–magnet system, which can be used to efficiently implement point velocity feedback control loops. However, the dynamics of the spring–magnet system limit the stability and control performance of the loops when the actuators are exposed to shocks. The proof mass actuator investigated in this paper includes an additional flywheel element that improves the stability of the velocity feedback loop both by increasing the feedback gain margin and by reducing the fundamental resonance frequency of the actuator. This paper is focused on the stability and control performance of decentralized velocity feedback control loops.
Go to article

Authors and Affiliations

Aleksander Kras
1
ORCID: ORCID
Paolo Gardonio
2
ORCID: ORCID

  1. Silencions, Bierutowska 57-59, 51-315 Wrocław, Poland
  2. DPIA, Università di Udine, Via delle Scienze 206, 33100, Udine, Italy
Download PDF Download RIS Download Bibtex

Abstract

Operating cranes is challenging because payloads can experience large and dangerous oscillations. Anti-sway control of crane payload can be approached by the active methods, such as feedback control, or passive methods. The feedback control uses the feedback measurement of swing vibration to produce the command sent to a motor. The feedback control shows good effectiveness, but conflict with the actions of the human operator is a challenge of this method. The passive method uses the spring-damper to dissipate energy. The passive method does not cause conflict with the human operator but has limited performance. This paper presents the combination of two methods to overcome the disadvantages of each separate one. The passive method is used to improve the efficiency of the feedback method to avoid conflicts with the human operator. The effectiveness of the combination is simulated in a 2D crane model.
Go to article

Bibliography


[1] D. Kim and Y. Park. Tracking control in x-y plane of an offshore container crane. Journal of Vibration and Control, 23(3):469-483, 2017. doi: 10.1177/1077546315581091.
[2] D.H. Kim and J.W. Lee. Model-based PID control of a crane spreader by four auxiliary cables. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220(8):1151-1165, 2006. doi: 10.1243/09544062JMES120.
[3] N. Uchiyama. Robust control of rotary crane by partial-state feedback with integrator. Mechatronics, 19(8):1294-1302, 2009. doi: 10.1016/j.mechatronics.2009.08.007.
[4] J. Smoczek. Fuzzy crane control with sensorless payload deflection feedback for vibration reduction. Mechanical Systems and Signal Processing, 46(1):70–81, 2014. doi: 10.1016/j.ymssp.2013.12.012.
[5] M. Zhang, X. Ma, X. Rong, X. Tian, and Y. Li. Adaptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parametric uncertainties and external disturbances. Mechanical Systems and Signal Processing, 76-77:15–32, 2016. doi: 10.1016/j.ymssp.2016.02.013.
[6] L.D. Viet and K.T. Nguyen. Combination of input shaping and radial spring-damper to reduce tridirectional vibration of crane payload. Mechanical Systems and Signal Processing, 116:310-321, 2019. doi: 0.1016/j.ymssp.2018.06.056.
[7] L.D. Viet and Y. Park. A cable-passive damper system for sway and skew motion control of a crane spreader. Shock and Vibration, 2015:507549, 2015. doi: 10.1155/2015/507549.
[8] L.D. Viet. Crane sway reduction using Coriolis force produced by radial spring and damper. Journal of Mechanical Science and Technology, 29(3):973-979, 2015. doi: 10.1007/s12206-015-0211-1.
[9] J. Vaughan, E. Maleki, and W. Singhose. Advantages of using command shaping over feedback for crane control. Proceedings of the 2010 American Control Conference, pages 2308-2313, 2010. doi: 10.1109/ACC.2010.5530548.
[10] J. Vaughan, A. Yano, and W. Singhose. Comparison of robust input shapers. Journal of Sound and Vibration, 315(4-5):797–815, 2008. doi: 10.1016/j.jsv.2008.02.032.
[11] W. Singhose. Command shaping for flexible systems: A review of the first 50 years. International Journal of Precision Engineering and Manufacturing, 10(4):153-168, 2009. doi: 10.1007/s12541-009-0084-2.
[12] J. Lawrence and W. Singhose. Command shaping slewing motions for tower cranes. Journal of Vibration and Acoustics, 132(1):011002, 2010. doi: 10.1115/1.3025845.
[13] D. Blackburn, W. Singhose, J. Kitchen, V. Patrangenaru, J. Lawrence, K. Tatsuaki, and A. Taura. Command shaping for nonlinear crane dynamics. Journal of Vibration and Control, 16(4):477-501, 2010. doi: 10.1177/1077546309106142.
[14] J. Huang, E. Maleki, and W. Singhose. Dynamics and swing control of mobile boom cranes subject to wind disturbances, IET Control Theory and Applications, 7(9):1187–1195, 2013. doi: 10.1049/iet-cta.2012.0957.
[15] R. Schmidt, N. Barry, and J. Vaughan. Tracking of a target payload via a combination of input shaping and feedback control. IFAC-PapersOnLine, 48(12):141-146, 2015. doi: 10.1016/j.ifacol.2015.09.367.
[16] N.D. Anh, H. Matsuhisa, L.D. Viet, and M. Yasuda. Vibration control of an inverted pendulum type structure by passive mass-spring-pendulum dynamic vibration absorber. Journal of Sound and Vibration, 307(1-2):187-201, 2007. doi: 10.1016/j.jsv.2007.06.060.
[17] Function Bay Inc., http://www.functionbay.co.kr/, last checked 27 May 2020.
Go to article

Authors and Affiliations

Trong Kien Nguyen
1

  1. Faculty of Civil Engineering, Vinh University, Vinh City, Nghe An, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The global stability of discrete-time nonlinear systems with descriptor positive linear parts and positive scalar feedbacks is addressed. Sufficient conditions for the global stability of standard and fractional nonlinear systems are established. The effectiveness of these conditions is illustrated on numerical examples.

Go to article

Authors and Affiliations

Tadeusz Kaczorek
ORCID: ORCID
Andrzej Ruszewski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

It is shown that in uncontrollable linear system = Ax + Bu it is possible to assign arbitrarily the eigenvalues of the closed-loop system with state feedbacks u = Kx, K ∈ ℜnm if rank [A B] = n. The design procedure consists in two steps. In the step 1 a nonsingular matrix  M ∈ ℜnm is chosen so that the pair (MA,MB) is controllable. In step 2 the feedback matrix K is chosen so that the closed-loop matrix Ac = A  − BK has the desired eigenvalues. The procedure is illustrated by simple example.

Go to article

Authors and Affiliations

Tadeusz Kaczorek
1
ORCID: ORCID

  1. Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

The eigenvalues assignment problems for descriptor linear systems with state and its derivative feedbacks are considered herein. Necessary and sufficient conditions for the existence of solutions to the problems are established. The Euler and Tustin approximations of the continuous-time systems are analyzed. Procedures for computation of the feedbacks are given and illustrated by numerical examples.
Go to article

Authors and Affiliations

Tadeusz Kaczorek
1
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Bialystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

In recent years the application of computer software to the learning process has been found to be an indisputably effective tool supporting the traditional teaching methods. Particular focus has been put on the application of techniques based on speech and language processing to the second language learning. Most of the commercial self-study programs, however, do not allow for introduction of an individualized learning course by the teacher and to concentrate on segmental features only. The paper discusses the use of speech technology in the training of foreign languages' pronunciation and prosody and defines pedagogical requirements for an effective training with CAPT systems. In this context, steps taken in the development of the intelligent tutoring system AzAR3.0 (German ‘Automat for accent reduction’) in the scope of the Euronounce project (Cylwik et al., 2008) are described with the focus on creation of the linguistic content. In response to the European Union's call for promoting less widely spoken languages, the project focuses on German as a target language for native speakers of Polish, Slovak, Czech, and Russian, and vice versa. The paper presents the design of the speech corpus for the purpose of the tutoring system and the analysis of pronunciation errors. The results of the latter provide information which is important for Automatic Speech Recognition (ASR) training on the one hand, and for automatic error detection and feedback generation on the other hand. In the end, Pitch Line software for implementation in the prosody visualization and training module of AzAR3.0 tutoring system is described.

Go to article

Authors and Affiliations

Grażyna Demenko
Agnieszka Wagner
Natalia Cylwik
Download PDF Download RIS Download Bibtex

Abstract

This paper addresses the problem of efficient searchingfor Nonlinear Feedback Shift Registers (NLFSRs) with a guaranteed full period. The maximum possible period for an n-bit NLFSR is 2n􀀀1 (an all-zero state is omitted). A multi-stages hybrid algorithm which utilizes Graphics Processor Units (GPU) power was developed for processing data-parallel throughput computation. Usage of the abovementioned algorithm allows giving an extended list of n-bit NLFSR with maximum period for 7 cryptographically applicable types of feedback functions
Go to article

Authors and Affiliations

Paweł Augustynowicz
Krzysztof Kanciak
Download PDF Download RIS Download Bibtex

Abstract

Modern and innovative road spreaders are now equipped with a special swiveling mechanism of the spreading disc. It allows for adjusting a symmetrical or asymmetrical spreading pattern and provides for the possibility to maintain the size of the spreading surface and achieve an accurately defined spreading pattern with spreading widths. Thus the paper presents a modelling and control design methodology, and the concept is proposed to design high-performance and optimal drive systems for spreading devices. The paper deals with a nonlinear model of an electric linear actuator and solution of the new intelligent/optimal control problem for the actuator.

Go to article

Authors and Affiliations

D. Dobrowolski
J. Dobrowolski
W. Piekarska
S. Stępień
Download PDF Download RIS Download Bibtex

Abstract

The synthesis problem for optimal control systems in the class of discrete controls is under consideration. The problem is investigated by reducing to a linear programming (LP) problem with consequent use of a dynamic version of the adaptive method of LP. Both perfect and imperfect information on behavior of control system cases are studied. Algorithms for the optimal controller, optimal estimators are described. Results are illustrated by examples.

Go to article

Authors and Affiliations

R. Gabasov
F.M. Kirillova
Download PDF Download RIS Download Bibtex

Abstract

We propose a class of m-crane control systems, that generalizes two- and three-dimensional crane systems. We prove that each representant of the described class is feedback equivalent to the second order chained form with drift. In consequence, we prove that it is differentially flat. Then we investigate its control properties and derive a control law for tracking control problem.

Go to article

Authors and Affiliations

M. Nowicki
W. Respondek
J. Piasek
K. Kozłowski
Download PDF Download RIS Download Bibtex

Abstract

The dynamics of the turning process of a thin-walled cylinder in manufacturing is modeled using flexible multibody system theory. The obtained model is time varying due to workpiece rotation and tool feed and retarded, due to repeated cutting of the same surface. Instabilities can occur due to these consecutive cuts that must be avoided in practical application because of the detrimental effects on workpiece, tool and possibly the machine. Neglecting the small feed, the stability of the resulting periodic system with time-delay can be analyzed using the semi-discretization method. The use of an adaptronic tool holder comprising actuators and sensors to improve the dynamic stability is then investigated. Different control concepts, two collocated and two model-based, are implemented in simulation and tuned to increase the domain of stable cutting. Cutting of a moderately thin workpiece exhibits instabilities mainly due to tool vibration. In this case, the stability boundary can be significantly improved. When the instability is due to workpiece vibration, the collocated concepts fail completely. Model based concepts can still obtain some improvements, but are sensitive to modeling errors in the coupling of workpiece and tool.

Go to article

Authors and Affiliations

Achim Fischer
Peter Eberhard
Download PDF Download RIS Download Bibtex

Abstract

Despite the large number of studies conducted on teachers’ oral corrective feedback, the findings of these studies have been mainly limited to cognitive orientations rooted in experimental designs and the verbal discourse of the teacher as the main object of inquiry. Considering teachers’ affective concerns regarding their corrective feedback and the shift from negative psychology to positive psychology in the field of second/foreign language teaching as well as the entirety of the teacher’s corrective repertoire, in this case study, we aimed to explore the enjoyment building capacity of a teacher’s multimodal corrective feedback in a university general English course. We video-recorded the teacher’s multimodal corrective feedback including verbal and nonverbal semiotic resources like gesture, gaze, and posture while observing the learners’ emotional experiences for eight sessions. We also conducted stimulated recall interviews with some learners and collected their written journals about the experiences of enjoyment with regard to the teacher’s multimodal corrective feedback scenarios. The teacher’s multimodal corrective feedback was analyzed through systemic functional multimodal discourse analysis (SF-MDA) and the content of the interview transcripts as well as the written journals were qualitatively analyzed. The findings indicated that the teacher’s inherent multimodality in his corrective feedback broadened the main dimensions of enjoyment by raising the learners’ attention to their errors, heightening their focus on the correct form, and increasing the salience of his corrective feedback. Further arguments regarding the findings are discussed.

Go to article

Authors and Affiliations

Mokarrameh Bayat
Majid Elahi Shirvan
ORCID: ORCID
Elyas Barabadi
Download PDF Download RIS Download Bibtex

Abstract

One of the most critical problems in all practical systems is the presence of uncertainties, internal and external disturbances, as well as disturbing noise, which makes the control of the system a challenging task. Another challenge with the physical systems is the possibility of cyber-attacks that the system’s cyber security against them is a critical issue. The systems related to oil and gas industries may also be subjected to cyber-attacks. The subsets of these industries can be mentioned to the oil and gas transmission industry, where ships have a critical role. This paper uses the Quantitative Feedback Theory (QFT) method to design a robust controller for the ship course system, aiming towards desired trajectory tracking. The proposed controller is robust against all uncertainties, internal and external disturbances, noise, and various possible Deception, Stealth, and Denial-of-Service (DOS) attacks. The robust controller for the ship system is designed using the QFT method and the QFTCT toolbox in MATLAB software. Numerical simulations are performed in MATLAB/Simulink for two case studies with disturbances and attacks involving intermittent sinusoidal and random behavior to demonstrate the proposed controller.
Go to article

Authors and Affiliations

Ali Soltani Sharif Abadi
1
Pooyan Alinaghi Hosseinabadi
2
Andrew Ordys
1
Michael Grimble
3

  1. Institute of Automatic Control and Robotics, Faculty of Mechatronics, Warsaw University of Technology, Warsaw, Poland
  2. School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT, Australia
  3. Department of Electronic and Electrical Engineering, University of Strathclyde Glasgow, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the issue related to control of the plant with nonconstant parameters is addressed. In order to assure the unchanged response of the system, an adaptive state feedback speed controller for permanent magnet synchronous motor is proposed. The model-reference adaptive system is applied while the Widrow-Hoff rule is used as adjustment mechanism of controller’s coefficients. Necessary modifications related to construction of the cost function and formulas responsible for adjustment of state feedback speed controller’s coefficients are depicted. The impact of adaptation gain, which is the only parameter in proposed adjustment mechanism, on system behaviour is experimentally examined. The discussion about computational resources consumption of the proposed adaptation algorithm and implementation issues is included. The proposed approach is utilized in numerous experimental tests on modern SiC based drive with nonconstant moment of inertia. Comparison between adaptive and nonadaptive control schemes is also shown.

Go to article

Authors and Affiliations

R. Szczepanski
T. Tarczewski
L.M. Grzesiak
Download PDF Download RIS Download Bibtex

Abstract

Poles and zeros assignment problem by state feedbacks in positive continuous-time and discrete-time systems is analyzed. It is shown that in multi-input multi-output positive linear systems by state feedbacks the poles and zeros of the transfer matrices can be assigned in the desired positions. In the positive continuous-time linear systems the feedback gain matrix can be chosen as a monomial matrix so that the poles and zeros of the transfer matrices have the desired values if the input matrix B is monomial. In the positive discrete-time linear systems to solve the problem the matrix B can be chosen monomial if and only if in every row and every column of the n x n system matrix A the sum of n-1 its entries is less than one. Key words: assignment, pole, zero, transfer matrix, linear, positive, system, state feedback
Go to article

Bibliography

[1] E. Antsaklis and A. Michel: Linear Systems. Birkhauser, Boston, 2006.
[2] L. Farina and S. Rinaldi: Positive Linear Systems: Theory and Applications. J. Wiley & Sons, New York, 2000.
[3] T. Kaczorek: Linear Control Systems, vol. 2. Research Studies Press LTD., J. Wiley, New York, 1992.
[4] T. Kaczorek: Positive 1D and 2D Systems. London, UK, Springer-Verlag, 2002.
[5] T. Kaczorek: Selected Problems of Fractional Systems Theory. Berlin, Germany, Springer-Verlag, 2011.
[6] T. Kaczorek and K. Rogowski: Fractional Linear Systems and Electrical Circuits, Studies in Systems, Decision and Control, Vol. 13. Springer, 2015.
[7] T. Kailath: Linear systems. Prentice Hall, Englewood Cliffs, New York, 1980.
[8] R.E. Kalman: Mathematical description of linear systems. J. SIAM Control, 1(2), (1963), 152–192, DOI: 10.1137/0301010.
[9] R.E. Kalman: On the general theory of control systems. Proc. First International Congress on Automatic Control, London, UK, Butterworth, (1960), 481–493,
[10] J. Klamka: Controllability of Dynamical Systems. Kluwer, Acadenic Publ., Dordrecht 1991.
[11] H. Rosenbrock: State-Space and Multivariable Theory. New York, USA, J. Wiley, 1970.
[12] S.M. Zak: Systems and Control. New York, Oxford University Press, 2003.
Go to article

Authors and Affiliations

Tadeusz Kaczorek
1
ORCID: ORCID

  1. Białystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

Respiratory disturbances frequently accompany stuttering. Their influence on lung ventilation can be assessed by measurement of the end-tidal CO2 concentration (EtCO2). The effectiveness of the CO2-based visual feedback method of breath regulation (VF) designed for stuttering therapy was tested in this study. The aim of the study was to answer the question if the VF helps to reduce respiratory disturbances in stuttering and increase speech fluency. 20 stuttering volunteers aged 13-45 years took part in the 3-parts test consisting of: 1. speaking without any techniques improving speech fluency, 2. learning the VF method, 3. VF-assisted speaking. The CO2/time signal and an acoustic signal of an utterance were recorded during the test. Significant increase of FE - the factor of breath ergonomics during speaking (based on both signals), from 47% to 71% (P < 0.01), and significant decrease of %SS - the percent of syllables stuttered, from 14% to 10% (P < 0.01) were received for VF-assisted utterances compared to the utterances without VF assistance. The results indicate that the VF can help to eliminate respiratory disturbances in stuttering and increase speech fluency.
Go to article

Authors and Affiliations

Barbara Stankiewicz
Krzysztof Zieliński
Marek Darowski
Marcin Michnikowski

This page uses 'cookies'. Learn more