Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Lighting sources with a cold cathode are widely used in electronics. The lamps with a cold cathode are used primarily as sources of white light in optical scanners, digital indicators, display panels and signalling devices. In the paper the advantages of carbonaceous materials as emitters of cold electrons and the possibilities of using them to create a cathode in an electron lamp are discussed.

Go to article

Authors and Affiliations

E. Czerwosz
S. Waszuk
M. Suchańska
J. Kęczkowska
Download PDF Download RIS Download Bibtex

Abstract

This article presents some results of work on the selection of the most promising types of lamps for various objects in industry, in commercial and residential buildings. It is shown that the use of a particular type of lamp depends on the conditions of a particular country (the cost of credit resources, the availability of different types of lamps on the market, and government incentives or restrictions), as well as on the conditions of the specific object (cost of lamps, duration of operation during the day, tariffs for energy resources, the cost of equipment and its installation (dismantling, utilization), the cost of replacing the equipment after leaving it, the term of service of various types of lamps). It is also necessary to consider the possible risks of changes in tariffs and the cost of money.
Go to article

Authors and Affiliations

Volodymyr Mamalyga
1
ORCID: ORCID

  1. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Maize dwarf mosaic virus (MDMV) is a serious and widespread virus pathogen of maize plants. This +ssRNA virus belongs to the Potyvirus genus in the Potyviridae family. Together with sugarcane mosaic virus (SCMV) it causes one of the most important viral diseases on maize crops in the world – maize dwarf mosaic. Both viruses are transmitted in the same non-persistent manner by several aphid species. They induce similar symptoms of leaf mosaic or mottling, stunting and a reduction in plant weight and grain yield. Available MDMV diagnostics include primarily commercialized enzyme-linked immunosorbent assays (ELISA) and reverse transcription-polymerase chain reactions (RT-PCR). Here, laborsaving reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay was optimized for identification of genetically different MDMV isolates. For this purpose, primer sets, MDMVF3/MDMVB3 and MDMVFIP/MDMVBIP amplifying fragments of coat protein coding sequence of MDMV, were used. The specificity of the reaction was verified using three MDMV (-P1, -Sp, -PV0802-DSMZ) and three SCMV (-P1, -PV0368- -DSMZ, -PV1207-DSMZ) isolates. Obtained products were visualised by DNA staining, electrophoretic separation as well as by real-time monitoring of the reaction. The sensitivity of RT-LAMP and conventional RT-PCR reactions was comparable. Both methods could detect virus as low as 550 fg · μl–1 of total RNA. This technique has application value for screening MDMV by phytosanitary services.
Go to article

Authors and Affiliations

Katarzyna Trzmiel
1
ORCID: ORCID
Beata Hasiów-Jaroszewska
1
ORCID: ORCID

  1. Department of Virology and Bacteriology, Institute of Plant Protection – National Research Institute, Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

Chrysanthemum stunt viroid (CSVd) is a serious pathogen infecting chrysanthemum worldwide. To improve and enhance the detection procedure, a colorimetric loop-mediated isothermal amplification (LAMP) technique was developed. Six LAMP primers were newly designed and tested to determine the optimal conditions using a recombinant plasmid of CSVd as a DNA template. The optimal conditions for colorimetric LAMP were incubation at 65°C for 45 min. Under these conditions, a ladder-like pattern of LAMP products was detected along with a change of color from pink to yellow in the positive reactions. Limits of the detection (LOD) of colorimetric LAMP were up to 1 fg ∙ μl–1 of plasmid DNA concentration which was 104 times greater than that of polymerase chain reaction (PCR). The developed colorimetric LAMP was not cross reacted to other viruses and viroids. From detection of actual samples and chrysanthemum plantlets which were obtained from meristem tip culture, the colorimetric LAMP showed effective potential in detecting CSVd. Therefore, the colorimetric LAMP can be used as a main technique to detect CSVd and ensure CSVd-free chrysanthemum plantlet production due to its accuracy, rapidness and sensitivity.
Go to article

Authors and Affiliations

Salit Supakitthanakorn
1
Kanjana Vichittragoontavorn
2
Kaewalin Kunasakdakul
1
On-Uma Ruangwong
1

  1. Division of Plant Pathology, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
  2. Plant Protection Center, Royal Project Foundation, Chiang Mai, Thailand
Download PDF Download RIS Download Bibtex

Abstract

The paper analyses the operation of different types of electronic colour sensors based on the light spectrum analysis. The application goal was to detect the type of the airport lamp based on differences in colour components of the light emitted by luminaires with specific spectral characteristics. Recognition of airport lamps is based on the analysis of the light spectrum. Proposed solution allows for an automatic software selection of appropriate conversion factors and comparison with specific standards necessary for this type of measurements. Various types of sensors were discussed and the AS7262 sensor was examined in detail. The colour sensor and the light intensity sensor were used in the mobile control device for examining elevated airport lamps and in the measurement platform for quality testing of embedded airport lamps. Two additional aspects were investigated: 1) influence of an additional acrylic glass cover; 2) distance between airport lamps and the spectrum sensor.
Go to article

Bibliography

  1. European Aviation Safety Agency. Certification Specifications (CS) and Guideline Material (GM) for Aerodrome Design. Edition 3, Annex to Decision No. 2016/027/R of the EASA Executive Director. (2016).
  2. Szpakowski, P. Lotnicza choinka czyli o świetlnych pomocach nawigacyjnych i ich kontroli. Safe Sky, Biuletyn Bezpieczeństwa Polskiej Agencji Żeglugi Powietrznej 4, 4–13 (2020) [in Polish].
  3. Novak, T., Dudek, J., Kolar, V., Sokansky, K. & Baleja, R. Solution of problems with short lifetime of airfield halogen lamps. in 18th International Scientific Conference on Electric Power Engineering (EPE) 1–5 (2017). https://doi.org/10.1109/EPE.2017.7967298
  4. Suder, J. Podbucki, K., Marciniak, T. & Dąbrowski, A. Low complex¬ity lane detection methods for light photometry system. Electronics 10, 1665 (2021). https://doi.org/10.3390/electronics10141665
  5. Podbucki, K., Suder, J., Marciniak, T. & Dąbrowski, A. Elektroniczna matryca pomiarowa do badania lamp lotniskowych. Prz. Elektrotechniczny 2, 47–51 (2021). https://doi.org/10.15199/48.2021.02.12 [in Polish]
  6. Żagan, W. Podstawy Techniki Świetlnej. (Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005). [in Polish]
  7. Suder, J., Maciejewski, P., Podbucki, K., Marciniak, T. & Dąbrowski, A. Platforma pomiarowa do badania jakości działania lamp lotniskowych. Pomiary, Automatyka, Robotyka 23, 5–13 (2019). https://doi.org/10.14313/PAR_232/5 [in Polish]
  8. Gigahertz-Optik GmbH, X4 Light Analyzer Datasheet (2007). http://www.industrycortex.com/datasheets/profile/506792174
  9. Texas Advanced Optoelectronic Solutions Inc., TCS3472 Colour light-to-digital converter with IR filter, TAOS135 (August 2012). http://www.datenblatt-pdf.com/pinout/911411/TCS3472-schematic.html
  10. Avago Technologies, APDS-9960 Digital Proximity, Ambient Light, RGB and Gesture Sensor, Data Sheet, AV02-4191EN (November 8, 2013). https://content.arduino.cc/assets/Nano_BLE_ Sense_av02-4191en_ds_apds-9960.pdf
  11. Intersil, Digital Red, Green and Blue Colour Light Sensor with IRBlocking Filter ISL29125, FN8424.2, (January 24, 2014). https://cdn.sparkfun.com/datasheets/Sensors/LightImaging/isl29125.pdf
  12. AMS, AS7265x Smart 18-Channel VIS to NIR Spectral_ID 3-Sensor Chipset with Electronic Shutter, Datasheet [v1-04], (July 9, 2018). https://datasheetspdf.com/pdf/1315799/ams/AS72651/1
  13. AMS, AS7341 11-Channel Multi-Spectral Digital Sensor, Datasheet DS000504 [v3-00], (June 25, 2020). https://datasheetspdf.com/pdf/1402690/ams/AS7341/1
  14. AMS, AS7262 6-Channel Visible Spectral_ID Device with Electronic Shutter and Smart Interface, Datasheet [v1-01], (March 17, 2017). https://ams.com/documents/20143/36005/AS7262_ DS000486_2-00.pdf
  15. ADB Safe gate, High Intensity Unidirectional Elevated Light for Approach, Threshold and Runway End and for Sequenced Flashing Lights (SFLS) Runway Threshold Identification (RTILS) Systems, User Manual, UM-4020/AM02-630e, Rev. 2.0, (May 19, 2020). https://adbsafegate.com/documents/2326/en/manual-uel
Go to article

Authors and Affiliations

Jakub Suder
1
ORCID: ORCID
Kacper Podbucki
1
ORCID: ORCID
Tomasz Marciniak
1
ORCID: ORCID
Adam Dąbrowski
1
ORCID: ORCID

  1. Division of Signal Processing and Electronic Systems, Institute of Automation and Robotics, Poznan University of Technology, 24 Jana Pawła II Ave., 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a design and performance analysis of a photosensor device enabling the measurement of the visible light illuminance. The sensor is designed for use in the light metering matrix of a mobile measurement platform allowing the correct operation of in-pavement airport lamps. This kind of control can be required by regulations and must meet the standards defined by the European Union Aviation Safety Agency (EASA). An important assumption of the solution was to obtain the highest possible speed of a measurement acquisition so that the control process would take place in a relatively short time. The proposed module concept is dedicated to the task of testing the quality of airport lamps, due to the characteristics of the photosensitive elements matching the light beams emitted by luminaries. The device is based on a VTP1220FBH photodiode and an ATmega328P microcontroller, which, in addition to the analogue-to-digital conversion and correction, sends the results back to the master unit via the I 2C bus.
Go to article

Bibliography

  1. Certification Specifications (CS) and Guideline Material (GM) for Aerodrome Design Edition 3, Annex to Decision No. 2016/027/Rof the EASA Executive Director, European Aviation Safety Agency. https://www.easa.europa.eu/en/downloads/21730/en (2016).
  2. Suder, J., Maciejewski, P., Podbucki, K., Marciniak, T. & Dąbrowski, A. Platforma pomiarowa do badania jakości działania lamp lotniskowych (Measuring platform fo quality testing of airport lamps). Pomiary Automatyka Robotyka PAR 23, 5–13 (2019). https://doi.org/10.14313/PAR_232/5 (in Polish)
  3. Podbucki, K., Suder, J., Marciniak, T. & Dąbrowski, A. Elektro-niczna matryca pomiarowa do badania lamp lotniskowych (Electronic measuring matrix for testing airport lamps). Przegląd Elektrotechniczny 97, 47–51 (2021). https://doi.org/10.15199/48.2021.02.12 (in Polish)
  4. Suder, J., Podbucki, K., Marciniak, T. & Dąbrowski, A. Spectrum sensors for detecting type of airport lamps in a light photometry system. Opto-Electron. Rev. 29, 133–140 (2021). https://doi.org/10.24425/opelre.2021.139383
  5. Suder, J., Podbucki, K., Marciniak, T. & Dąbrowski, A. Low complexity lane detection methods for light photometry system. Electronics 10, 1665 (2021). https://doi.org/10.3390/electronics10141665
  6. BH1750 Digital 16bit Serial Output Type Ambient Light Sensor IC Technical Note. https://www.mouser.com/datasheet/2/348/bh1750fvi-e-186247.pdf (2011).
  7. Krac, E. & Górecki, K. Wpływ kąta padania światła na wartości natężenia oświetlenia zmierzone za pomocą czujników fotometry-cznych (Influence of the angle of incidence of light on the values of illuminance measureg with photodetectors). Przegląd Elektro-techniczny 97, 214–217 (2021). https://doi.org/10.15199/48.2021.12.44 (in Polish)
  8. Sitompul, D. D., Surya, F. E., Suhandi, F. P. & Zakaria, H. Runway Edge Light Photometry System by Using Drone-Mounted Instrument. in International Symposium on Electronics and Smart Devices (ISESD) 1–5 (2019). https://doi.org/10.1109/ISESD.2019.8909498
  9. Sitompul, D. S. D., Surya, F. E., Suhandi, F. P. & Zakaria H. Horizontal Scanning Method by Drone Mounted Photodiode Array for Runway Edge Light Photometry. in International Seminar on Intelligent Technology and Its Applications (ISITIA) 41–45 (2019). https://doi.org/10.1109/ISITIA.2019.8937211
  10. Gao, J., Luo, J., Xu, A. & Yu, J. Light Intensity Intelligent Control System Research snd Design Based on Automobile Sun Visor of BH1750. in 29th Chinese Control And Decision Conference (CCDC) 3957–3960 (2017). https://doi.org/10.1109/CCDC.2017.7979192
  11. Grove – Light Sensor v1.2. Seeed Development Limited https://seeeddoc.github.io/Grove-Light_Sensor_v1.2/ (2016).
  12. BPW21TO39 Ambient Light Sensor Datasheet. ams-OSRAM AG https://dammedia.osram.info/media/resource/hires/osram-dam-5984961/BPW%2021_EN.pdf (2022).
  13. Ptak, P., Górecki, K. & Gensikowski, M. Porównanie właściwości dynamicznych wybranych czujników fotometrycznych (Compa-rison of dynamic properties of the selected photometric sensors). Przegląd Elektrotechniczny 96, 112–116 (2020). https://doi.org/10.15199/48.2020.12.21 (in Polish)
  14. Ambient Light Sensors VTP1220FBH Product Description. Exelitas https://www.tme.eu/Document/99fa8b97bc9fac9fd65b9c88e771e8d1/2.pdf (2022).
  15. Raes, W., Bastiaens, S., Plets, D. & Stevens, N. Assessment of the Influence of Photodiode Size on RSS-Based Visible Light Positioning Precision. IEEE SENSORS 1–3 (2019). https://doi.org/10.1109/SENSORS43011.2019.8956543
  16. Hudzikowski, A. Luksomierz kit 2974 AVT. Elektronika dla wszystkich EDW 03/11, 56–58, 2011. https://serwis.avt.pl/manuals/AVT2974.pdf (in Polish)
  17. Mańczak, W. Development of a microprocessor matrix to measure the lightning intensity of airport lamps. (Poznan University of Technology, 2022).
  18. Alferink, F. Fast Lux-meter: Electronic Measurements. Meettech-niek.info. https://meettechniek.info/diy-instruments/lux-meter.html (2013).
Go to article

Authors and Affiliations

Kacper Podbucki
1
ORCID: ORCID
Jakub Suder
1
ORCID: ORCID
Tomasz Marciniak
1
ORCID: ORCID
Wojciech Mańczak
2
ORCID: ORCID
Adam Dąbrowski
1
ORCID: ORCID

  1. Division of Signal Processing and Electronic Systems, Institute of Automatic Control and Robotics, Poznan University of Technology, 5 M. Skłodowska-Curie Sq., 60-965 Poznań, Poland
  2. Faculty of Computing and Telecommunications, Poznan University of Technology, 5 M. Skłodowska-Curie Sq., 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this short paper, nine formerly unpublished rayed lamps from south-eastern Turkey, eight from Mardin and one from Malatya are being presented, belonging to a well-known type, starting from the end of the sixth century A.D., which became particularly widespread in the eighth century A.D. The article adds to a group of ‘rayed’ lamps from the Near East next few examples found in less accessible museums in Turkey and it also includes a useful historical sketch of the region during the Byzantine and Early Islamic period. The publication of these new specimens is valuable as the material from this area of modern Turkey is rarely published. While waiting for research on the many further lamps that are likely to be found in numerous museums to be published, this contribution helps us understand the variety of lamps and their area of diffusion, which stretches from northern Mesopotamia down to Palestine, including south-eastern Turkey, Syria, Lebanon and Israel.
Go to article

Authors and Affiliations

Ergün Laflı
1
ORCID: ORCID
Maurizio Buora
2
ORCID: ORCID

  1. Dokuz Eylül University
  2. Società Friulana di Archeologia, Udine
Download PDF Download RIS Download Bibtex

Abstract

This article is focused on considerations based on experimental studies concerning changes of selected parameters of identical compact fluorescent lamps (CFLs) intended for use in buildings during their operation. The studies constituted a long-term experiment whose goal was an evaluation of selected operating parameters of the CFLs in terms of meeting the requirements set out in the specified regulations as well as the issue of marking the lamps with the energy efficiency class. The measurements were performed with the authors’ experimental setup consisting of original equipment designed and made especially for the purpose of the measurements. The studies covered registration of the luminous flux as well as selected electrical parameters such as active power, current and the power factor during the so-called “start-up time” and operation time equal to 100 h, 500 h, 1000 h, 2000 h, etc. with a 1000 h step. The studies were finished with the moment of natural burnout of the CFLs tested. The results showed that the biggest drawback of CFLs is lack of preservation of the required time to reach 60% of the stabilized luminous flux just after short time of lamp operation. Similarly when assessing the conformity of the parameters declared by the manufacturer that have been verified, it can be stated that they are true only at the initial stage of lamp operation.

Go to article

Authors and Affiliations

Jarosław Zygarlicki
Małgorzata Zygarlicka
Janusz Mroczka
Download PDF Download RIS Download Bibtex

Abstract

This article is focused on considerations based on experimental studies concerning changes of selected parameters of identical compact fluorescent lamps (CFLs) intended for use in buildings during their operation. The studies constituted a long-term experiment whose goal was an evaluation of selected operating parameters of the CFLs in terms of meeting the requirements set out in the specified regulations as well as the issue of marking the lamps with the energy efficiency class. The measurements were performed with the authors’ experimental setup consisting of original equipment designed and made especially for the purpose of the measurements. The studies covered registration of the luminous flux as well as selected electrical parameters such as active power, current and the power factor during the so-called “start-up time” and operation time equal to 100 h, 500 h, 1000 h, 2000 h, etc. with a 1000 h step. The studies were finished with the moment of natural burnout of the CFLs tested. The results showed that the biggest drawback of CFLs is lack of preservation of the required time to reach 60% of the stabilized luminous flux just after short time of lamp operation. Similarly when assessing the conformity of the parameters declared by the manufacturer that have been verified, it can be stated that they are true only at the initial stage of lamp operation.

Go to article

Authors and Affiliations

Przemysław Tabaka
ORCID: ORCID
Paweł Rózga
Download PDF Download RIS Download Bibtex

Abstract

The development of technology and design of light management systems remains dynamic. Among all the benefits offered by these systems, the most valuable might definitely be the possibility of saving energy consumption. Knowing the value of energy savings is the key factor that users need to know before deciding to use a lighting management system (the type of light management system). For this purpose, it is useful to simulate the operation of the lighting control system, for example in the DIALux program. Such simulation helps evaluate potential savings in electricity consumption using the proposed lighting control system. In the DIALux program, it is possible to change the luminous flux value of luminaires. In such a case, it becomes possible to semi-simulate the light management system’s operation as we don’t receive actual information on reducing installed power of the lighting system during reduction of the luminous flux value of luminaires. This article shows what type of technical data are important to use for the DIALux program to properly and accurately simulate light management systems and to receive accurate data on energy saving. It also presents the results of photometrical and electric parameter measurements (Φ – luminous flux, P – power, PF – power factor, THDi – total harmonic distortion of current). The article discusses the power control characteristics obtained on the basis of these measurements and explores the source of differences between simulation of energy saving calculations and real measured energy savings. An existing lighting control system installed in an office reception area was used to compare calculations with the real value of energy consumption reduction. The impact of electronic power and control systems on electrical network parameters is also an important problem mentioned in this article. It also explores the effect of power regulation of LED luminaires and LED modules on the value of the power factor and total harmonic distortion (current) value (THDi).

Go to article

Authors and Affiliations

A. Wiśniewski
Download PDF Download RIS Download Bibtex

Abstract

Outdoor lighting is an important element in creating an evening and nocturnal image of urban spaces. Properly designed and constructed lighting installations provide residents with comfort and security. One way to improve the energy efficiency of road lighting installation is to replace the electromagnetic control gear (ECG) with electronic ballasts (EB). The main purpose of this article is to provide an in-depth comparative analysis of the energy efficiency and performance of HPS lamps with ECG and EB. It will compare their performance under sinusoidal and nonsinusoidal voltage supply conditions for the four most commonly used HPS lamps of 70 W, 100 W, 150 W, and 250 W. The number of luminaires supplied from one circuit was determined based on the value of permissible active power losses. With the use of the DIALux program, projects of road lighting installation were developed. On this basis, energy performance indicators, electricity consumption, electricity costs, and CO 2 emissions were calculated for one-phase and three-phase installations. The obtained results indicate that an HPS lamp with EB is better than an HPS lamp with ECG in terms of energy quality, energy savings, and environmental impact. The results of this analysis are expected to assist in the choice of HPS lighting technology.
Go to article

Bibliography

  1.  A. Mayeur, R. Bremond, and J.M.Ch. Bastien, “The effect of the driving activity on target detection as a function of the visibility level: implications for road lighting”, Transp. Res. 13(2), 115‒128 (2010).
  2.  Ch. Boomsma and L. Steg, “The effect of information and values on acceptability of reduced street lighting“, J. Environ. Psychol. 39, 22‒31 (2014).
  3.  A. Pena-Garcia, A. Hurtado, and M.C. Aguilar-Luzon, “Impact of public lighting on pedestrians’ perception of safety and well-being”, Saf. Sci. 78, 142‒148 (2015).
  4.  J.D. Bullough, E.T. Donnell, and M.S. Rea, “To illuminate or not to illuminate: roadway lighting as it affects traffic safety at intersections”, Accid. Anal. Prev. 53, 65‒77 (2013).
  5.  A. Jafari-Anarkooli and M. Hadji Hosseinlou, “Analysis of the injury severity of crashes by considering different lighting conditions on two-lane rural roads”, J. Saf. Res. 56, 57‒65 (2016).
  6.  M. Jackett and W. Frith, “Quantifying the impact of road lighting on road safety-a New Zealand study”, IATSS Res. 36, 139‒145 (2013).
  7.  K. Kircher and Ch. Ahlstrom, “The impact of tunnel design and lighting on the performance of attentive and visually distracted drivers”, Accid. Anal. Prev. 47, 153‒161 (2012).
  8.  M. Kostic and L. Djokic, “Recommendation for energy efficient and visually acceptable street lighting”, Energy 34, 1565–1572 (2009).
  9.  D. Campisi, S. Gitto, and D. Morea, “Economic feasibility of energy improvements in street lighting systems in Rome”, J. Clean. Prod. 175, 190‒198 (2018).
  10.  S. Yoomak and A. Ngaopitakkul, “Optimisation of quality and energy efficiency of LED luminaires in roadway lighting systems on different road surfaces”, Sustain. Cities Soc. 38, 333‒347 (2018).
  11.  F. Lecce, G. Salvadoni, and M. Rocca, “Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy”, Energy 138, 616‒628 (2017).
  12.  M. Beccali, M. Bonomolo, F. Leccese, D. Lista,, and G. Salvadoni, “On the impact of safety requirements , energy prices and investment costs in street lighting refurbishment design”, Energy 165, 739–759 (2018).
  13.  P. Pracki, A. Wiśniewski, D. Czyżewski, R. Krupiński, K. Skarżyński, M. Wesołowski, and A. Czaplicki, “Strategies influencing energy efficiency of lighting solutions”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 711‒719 (2020).
  14.  P.R. Boyce, S. Fotios, and M. Richards, “Road lighting and energy savings”, Lighting Res. Technol. 41, 245‒260 (2009).
  15.  C.C.M. Kyba, A. Hänel, and F. Hölker, “Redefining efficiency for outdoor lighting”, Energy Environ. Sci. 7, 1806‒1814 (2014).
  16.  M. Beccali, M. Bonomolo, G. Ciulla, A. Galatioto, and V. Lo Brano, “Improvement of energy efficiency and quality of street light-ing in South Italy as an action of Sustainable Energy Action Plans. The case study of Comiso (RG)”, Energy 92(3), 394‒408 (2015).
  17.  A. Wiśniewski, “Calculations of energy savings using lighting control systems ”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 809‒817 (2020).
  18.  M. IndraalIrsyad and N. Rabindra, “A survey based approach to estimating the benefits of energy efficiency improvements in street lighting systems in Indonesia”, Renew. Sust. Energ. Rev. 58, 1569–1577 (2016).
  19.  S. Pizzuti, M. Annunziato, and F. Moretti, “Smart street lighting management”, Energy Effic. 6, 607–616 (2013).
  20.  D. Radulovic, S. Skok, and V. Kirincic, “Energy Effic. public lighting management in the cities”, Energy 36, 1908–1915 (2011).
  21.  A. Djuretic and M. Kostic, “Comparison of electronic and conventional ballasts used in roadway lighting”, Light. Res. Technol. 46, 407–420 (2014).
  22.  S. Yoomak, Ch. Jettansen, and S. Ngaopitakkul Bunjongjit, “Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system”, Energy Build. 159, 542‒557 (2018).
  23.  M.H. Omar, H. Abdul Rahman, M.S. Majid, M.Y. Hassan, and N. Rosmin, “The reduction of total harmonic distortion and electromagnetic interference in high pressure sodium street lighting using single stage electronic ballast”, IEEE International Power Engineering and Optimization Conference (PEOCO) 2012, pp. 230‒235.
  24.  A.A. Mansour and O.A. Arafa, “Comparative study of 250 W high pressure sodium lamp operating from both conventional and electronic ballast”, J. Electr. Syst. Inf. Technol. 1, 234‒254 (2014).
  25.  W. Nsibi, M. Nehdi, A.J. Chammam, A. Sellami, and G. Zissis, “Dimmable electronic ballast for HPS lamp operating in LF”, 7th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 2016, pp. 1‒4.
  26.  M.N. Nehdi, W. Nsibi, A. Chammam, A. Sellami, and G. Zissis, “Frequency dimmable electronic ballast for a 250W HPS lamp”, 7th International Renewable Energy Congress (IREC), Hammamet, 2016, pp. 1‒3.
  27.  R. Sikora and P. Markiewicz, “Assessment of Colorimetric Parameters for HPS Lamp with Electromagnetic Control Gear and Electronic Ballast”, Energies, 13(11), 2909 (2020), doi: 10.3390/en13112909.
  28.  F.B. dos Reis, J. Cesar Marques de Lima, and F.S. dos Reis, “Development of a flexible public lighting system”, 39th Annual Conference of the Industrial Electronics Society (IECON), 2013, pp. 6046‒6051.
  29.  A. Gil-De-Castro, A. Moreno-Munoz, and J.J.G. De La Rosa, “Comparative study of electromagnetic and electronic ballasts – an assessment on harmonic emission”, Electr. Rev.-Prz. Elektrotechniczny 88(2), 288‒294 (2012).
  30.  H. Shu-Hung Chung, N.M. Ho, W. Yan, P. Wai Tam, and S.Y. Hui, “Comparison of Dimmable Electromagnetic and Electronic Ballast Systems—An Assessmenton Energy Effic. and Lifetime”, IEEE Trans. Ind. Electron. 54, 3145‒3154 (2007).
  31.  M.H. Omar, H.A. Rahman, M.S. Majid, N. Rosmin, M.Y. Hassan, and W.Z. Wan Omar, “Design and simulation of electronic ballast performance for high pressure sodium street lighting”, Light. Res. Technol. 45, 729–739 (2013).
  32.  S. Hossein-Hosseini, M. Sabahi, and A. Yazdanpanah-Goharrizi, “An improved topology of electronic ballast with wide dimming range,PFC and low switching losses using PWM-controlled soft-switching inwerter”, Electr. Power Syst. Res. 78, 975–984 (2008).
  33.  A. Burgio and D. Menniti, “A novel technique for energy savings by dimming high pressure sodium lamps mounted with magnetic ballasts using a centralized system”, Electr. Power Syst. Res. 96, 16‒22 (2013).
  34.  K. Hyodhyad and K. Supanaroj, “Energy saving project for street lighting of Provincial Electricity Authority (PEA)”, 2nd Joint International Conference on Sustainable Energy and Environment (SEE2006), 2006, pp. 1‒6.
  35.  W. Yan, S.Y.R. Hui, and S.H. Chung, “Energy saving of large-scale high-intensity -discharge lamp lighting networks using a central reactive power control system”, IEEE Trans. Ind. Electron. 50, 3069‒3078 (2009).
  36.  M. Catelani and L. Ciani, “Experimental tests and reliability assessment of electronic ballast system”, Microelectron. Reliab. 52, 1833–1836 (2012).
  37.  J. Molina, L. Sainz, J.J. Mesas, and J.G. Bergas, “Model of discharge lamps with magnetic ballast”, Electr. Power Syst. Res. 95, 112‒120 (2013).
  38.  C.B. Viejo, J.C.A. Anton, A. Robles, F.F. Martin, J.C. Viera, S. Bhosle, and G. Zissis, “Comparison between different discharge lamp models based on lamp dynamic conductance”, IEEE Trans. Ind. Electron. 47, 1983‒1991 (2011).
  39.  J. Mesasa, L. Sainza, and A. Ferrerb, “Deterministic and stochastic assessment of the harmonic currents consumed by discharge lamps”, Electr. Power Syst. Res. 81, 10–18 (2011).
  40.  I. Azcarate, J.J. Gutierrez, A. Lazkano, P. Saiz, K. Redondo, and L.A. Leturiondo, “Experimental study of the response of efficient lighting technologies to complex voltage fluctuations”, Electr. Power Energy Syst. 63, 499–506 (2014).
  41.  A. Dolara, R. Faranda, S. Guzzetti, and S. Leva, “Power Quality in Public Lighting Systems”, Proceedings of the 14th International Conference on Harmonics and Quality of Power, Bergamo, Italy, 2010, pp. 1‒7.
  42.  A. Gil de Castro, M.A. Moreno, L.V. Pallarés, and A.A. Pérez, “Harmonic Effect in Street Lighting”, Proceedings of the 7th International Conference-Workshop Compatibility and Power Electronics (CPE), Tallinn, Estonia, 2011, pp. 16‒21.
  43.  M.J.H. Orzáez, Róchaz J. Sola, and A. Gago-Calderon, “Electrical consequences of large-scale replacement of metal-halide by LED luminaires”, Light. Res. Technol. 50, 282–293 (2016).
  44.  M.H.J. Bollen, S.K. Rönnberg, E.O.A. Larsson, M. Wahlberg, and C.M. Lundmark, “Harmonic Emission from Installations with Energy- Efficient Lighting”, Proceedings of the 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, Portugal, 2011, pp. 1‒6.
  45.  EN 50160:2007 “Voltage Characteristics of Electricity Supplied by Public Distribution Systems”, European Union: Brussels, Belgium, (2007).
  46.  R. Sikora, P. Markiewicz, and W. Pabjańczyk, “Computing Active Power Losses Using a Mathematical Model of a Regulated Street Luminaire”, Energies 11, 1386‒1406 (2018).
  47.  R. Sikora, P. Markiewicz, and W. Pabjańczyk, “The Active Power Losses in the Road Lighting Installation with Dimmable LED Luminaires”, Sustainability10, 4742‒4760 (2018).
  48.  IEC 60287-1-1, Electric Cables – Calculation of current rating – calculation of losses – Section 1: General, (2006).
  49.  IEEE Std. 1459-2010. Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions, (2010).
  50.  Ustawa z dnia 20 maja 2016 r. o efektywności energetycznej, Dz.U. 2016 poz. 831.
  51.  The Energy Effic. Directive (2012/27/EU).
  52.  R.C. Degeneff, T.M. Halleran, T.M. McKernan, and J.A. Palmer, “Pipe – type cable ampacities in the presence of Harmonics”, IEEE Trans. Power Deliv. 8, 1689 –1695 (1993).
  53.  C. Demoulias, D.P. Labridis, P.S. Dokopoulos, and K. Gouramanis, “Ampacity of Low-Voltage Power Cables Under Nonsinusoidal Currents”, IEEE Trans. Power Deliv. 22, 584‒594 (2007).
  54.  J.J. Desmet, G. Vanalme, R. Belmans, and D. Van Dommelen, “Simulation of losses in LV cables due to nonlinear loads”, 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 2008, pp. 785‒790.
  55.  A. Hiranandani, “Calculation of cable ampacities including the effects of harmonics”, IEEE Industry Applications Magazine 4, 42‒51 (1998).
  56.  Z. Gabryjelski and Z. Kowalski, Sieci i urządzenia oświetleniowe. Zagadnienie wybrane, Wydawnictwo Politechniki Łódzkiej, Łódź, 1997.
  57.  EN 13201-5:2015. Light and lighting. Road lighting – Part 5: Energy performance indicators.
  58.  “Electricity price statistics”. [Online] Available: https://ec.europa.eu/eurostat/statistics-explained/pdfscache/45239.pdf.
  59.  Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, “Wskaźniki emisyjności CO2, SO2, NOx, CO i pyłu całkowitego dla energii elektrycznej”. [Online] Available: http://www.kobize.pl/ [in Polish].
Go to article

Authors and Affiliations

Roman Sikora
1
ORCID: ORCID
Przemysław Markiewicz
1
ORCID: ORCID
Paweł Rózga
1

  1. Lodz University of Technology, Institute of Electrical Power Engineering, ul. Stefanowskiego 18/22, 90-924 Lodz, Poland

This page uses 'cookies'. Learn more