Details

Title

Active power losses and energy efficiency analysis of HPS lamps with electromagnetic control gear and electronic ballast under the sinusoidal and nonsinusoidal condition

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

3

Affiliation

Sikora, Roman : Lodz University of Technology, Institute of Electrical Power Engineering, ul. Stefanowskiego 18/22, 90-924 Lodz, Poland ; Markiewicz, Przemysław : Lodz University of Technology, Institute of Electrical Power Engineering, ul. Stefanowskiego 18/22, 90-924 Lodz, Poland ; Rózga, Paweł : Lodz University of Technology, Institute of Electrical Power Engineering, ul. Stefanowskiego 18/22, 90-924 Lodz, Poland

Authors

Keywords

HPS lamp ; electromagnetic control gear ; electronic ballast ; energy performance indicator ; road lighting

Divisions of PAS

Nauki Techniczne

Coverage

e137194

Bibliography

  1.  A. Mayeur, R. Bremond, and J.M.Ch. Bastien, “The effect of the driving activity on target detection as a function of the visibility level: implications for road lighting”, Transp. Res. 13(2), 115‒128 (2010).
  2.  Ch. Boomsma and L. Steg, “The effect of information and values on acceptability of reduced street lighting“, J. Environ. Psychol. 39, 22‒31 (2014).
  3.  A. Pena-Garcia, A. Hurtado, and M.C. Aguilar-Luzon, “Impact of public lighting on pedestrians’ perception of safety and well-being”, Saf. Sci. 78, 142‒148 (2015).
  4.  J.D. Bullough, E.T. Donnell, and M.S. Rea, “To illuminate or not to illuminate: roadway lighting as it affects traffic safety at intersections”, Accid. Anal. Prev. 53, 65‒77 (2013).
  5.  A. Jafari-Anarkooli and M. Hadji Hosseinlou, “Analysis of the injury severity of crashes by considering different lighting conditions on two-lane rural roads”, J. Saf. Res. 56, 57‒65 (2016).
  6.  M. Jackett and W. Frith, “Quantifying the impact of road lighting on road safety-a New Zealand study”, IATSS Res. 36, 139‒145 (2013).
  7.  K. Kircher and Ch. Ahlstrom, “The impact of tunnel design and lighting on the performance of attentive and visually distracted drivers”, Accid. Anal. Prev. 47, 153‒161 (2012).
  8.  M. Kostic and L. Djokic, “Recommendation for energy efficient and visually acceptable street lighting”, Energy 34, 1565–1572 (2009).
  9.  D. Campisi, S. Gitto, and D. Morea, “Economic feasibility of energy improvements in street lighting systems in Rome”, J. Clean. Prod. 175, 190‒198 (2018).
  10.  S. Yoomak and A. Ngaopitakkul, “Optimisation of quality and energy efficiency of LED luminaires in roadway lighting systems on different road surfaces”, Sustain. Cities Soc. 38, 333‒347 (2018).
  11.  F. Lecce, G. Salvadoni, and M. Rocca, “Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy”, Energy 138, 616‒628 (2017).
  12.  M. Beccali, M. Bonomolo, F. Leccese, D. Lista,, and G. Salvadoni, “On the impact of safety requirements , energy prices and investment costs in street lighting refurbishment design”, Energy 165, 739–759 (2018).
  13.  P. Pracki, A. Wiśniewski, D. Czyżewski, R. Krupiński, K. Skarżyński, M. Wesołowski, and A. Czaplicki, “Strategies influencing energy efficiency of lighting solutions”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 711‒719 (2020).
  14.  P.R. Boyce, S. Fotios, and M. Richards, “Road lighting and energy savings”, Lighting Res. Technol. 41, 245‒260 (2009).
  15.  C.C.M. Kyba, A. Hänel, and F. Hölker, “Redefining efficiency for outdoor lighting”, Energy Environ. Sci. 7, 1806‒1814 (2014).
  16.  M. Beccali, M. Bonomolo, G. Ciulla, A. Galatioto, and V. Lo Brano, “Improvement of energy efficiency and quality of street light-ing in South Italy as an action of Sustainable Energy Action Plans. The case study of Comiso (RG)”, Energy 92(3), 394‒408 (2015).
  17.  A. Wiśniewski, “Calculations of energy savings using lighting control systems ”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 809‒817 (2020).
  18.  M. IndraalIrsyad and N. Rabindra, “A survey based approach to estimating the benefits of energy efficiency improvements in street lighting systems in Indonesia”, Renew. Sust. Energ. Rev. 58, 1569–1577 (2016).
  19.  S. Pizzuti, M. Annunziato, and F. Moretti, “Smart street lighting management”, Energy Effic. 6, 607–616 (2013).
  20.  D. Radulovic, S. Skok, and V. Kirincic, “Energy Effic. public lighting management in the cities”, Energy 36, 1908–1915 (2011).
  21.  A. Djuretic and M. Kostic, “Comparison of electronic and conventional ballasts used in roadway lighting”, Light. Res. Technol. 46, 407–420 (2014).
  22.  S. Yoomak, Ch. Jettansen, and S. Ngaopitakkul Bunjongjit, “Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system”, Energy Build. 159, 542‒557 (2018).
  23.  M.H. Omar, H. Abdul Rahman, M.S. Majid, M.Y. Hassan, and N. Rosmin, “The reduction of total harmonic distortion and electromagnetic interference in high pressure sodium street lighting using single stage electronic ballast”, IEEE International Power Engineering and Optimization Conference (PEOCO) 2012, pp. 230‒235.
  24.  A.A. Mansour and O.A. Arafa, “Comparative study of 250 W high pressure sodium lamp operating from both conventional and electronic ballast”, J. Electr. Syst. Inf. Technol. 1, 234‒254 (2014).
  25.  W. Nsibi, M. Nehdi, A.J. Chammam, A. Sellami, and G. Zissis, “Dimmable electronic ballast for HPS lamp operating in LF”, 7th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 2016, pp. 1‒4.
  26.  M.N. Nehdi, W. Nsibi, A. Chammam, A. Sellami, and G. Zissis, “Frequency dimmable electronic ballast for a 250W HPS lamp”, 7th International Renewable Energy Congress (IREC), Hammamet, 2016, pp. 1‒3.
  27.  R. Sikora and P. Markiewicz, “Assessment of Colorimetric Parameters for HPS Lamp with Electromagnetic Control Gear and Electronic Ballast”, Energies, 13(11), 2909 (2020), doi: 10.3390/en13112909.
  28.  F.B. dos Reis, J. Cesar Marques de Lima, and F.S. dos Reis, “Development of a flexible public lighting system”, 39th Annual Conference of the Industrial Electronics Society (IECON), 2013, pp. 6046‒6051.
  29.  A. Gil-De-Castro, A. Moreno-Munoz, and J.J.G. De La Rosa, “Comparative study of electromagnetic and electronic ballasts – an assessment on harmonic emission”, Electr. Rev.-Prz. Elektrotechniczny 88(2), 288‒294 (2012).
  30.  H. Shu-Hung Chung, N.M. Ho, W. Yan, P. Wai Tam, and S.Y. Hui, “Comparison of Dimmable Electromagnetic and Electronic Ballast Systems—An Assessmenton Energy Effic. and Lifetime”, IEEE Trans. Ind. Electron. 54, 3145‒3154 (2007).
  31.  M.H. Omar, H.A. Rahman, M.S. Majid, N. Rosmin, M.Y. Hassan, and W.Z. Wan Omar, “Design and simulation of electronic ballast performance for high pressure sodium street lighting”, Light. Res. Technol. 45, 729–739 (2013).
  32.  S. Hossein-Hosseini, M. Sabahi, and A. Yazdanpanah-Goharrizi, “An improved topology of electronic ballast with wide dimming range,PFC and low switching losses using PWM-controlled soft-switching inwerter”, Electr. Power Syst. Res. 78, 975–984 (2008).
  33.  A. Burgio and D. Menniti, “A novel technique for energy savings by dimming high pressure sodium lamps mounted with magnetic ballasts using a centralized system”, Electr. Power Syst. Res. 96, 16‒22 (2013).
  34.  K. Hyodhyad and K. Supanaroj, “Energy saving project for street lighting of Provincial Electricity Authority (PEA)”, 2nd Joint International Conference on Sustainable Energy and Environment (SEE2006), 2006, pp. 1‒6.
  35.  W. Yan, S.Y.R. Hui, and S.H. Chung, “Energy saving of large-scale high-intensity -discharge lamp lighting networks using a central reactive power control system”, IEEE Trans. Ind. Electron. 50, 3069‒3078 (2009).
  36.  M. Catelani and L. Ciani, “Experimental tests and reliability assessment of electronic ballast system”, Microelectron. Reliab. 52, 1833–1836 (2012).
  37.  J. Molina, L. Sainz, J.J. Mesas, and J.G. Bergas, “Model of discharge lamps with magnetic ballast”, Electr. Power Syst. Res. 95, 112‒120 (2013).
  38.  C.B. Viejo, J.C.A. Anton, A. Robles, F.F. Martin, J.C. Viera, S. Bhosle, and G. Zissis, “Comparison between different discharge lamp models based on lamp dynamic conductance”, IEEE Trans. Ind. Electron. 47, 1983‒1991 (2011).
  39.  J. Mesasa, L. Sainza, and A. Ferrerb, “Deterministic and stochastic assessment of the harmonic currents consumed by discharge lamps”, Electr. Power Syst. Res. 81, 10–18 (2011).
  40.  I. Azcarate, J.J. Gutierrez, A. Lazkano, P. Saiz, K. Redondo, and L.A. Leturiondo, “Experimental study of the response of efficient lighting technologies to complex voltage fluctuations”, Electr. Power Energy Syst. 63, 499–506 (2014).
  41.  A. Dolara, R. Faranda, S. Guzzetti, and S. Leva, “Power Quality in Public Lighting Systems”, Proceedings of the 14th International Conference on Harmonics and Quality of Power, Bergamo, Italy, 2010, pp. 1‒7.
  42.  A. Gil de Castro, M.A. Moreno, L.V. Pallarés, and A.A. Pérez, “Harmonic Effect in Street Lighting”, Proceedings of the 7th International Conference-Workshop Compatibility and Power Electronics (CPE), Tallinn, Estonia, 2011, pp. 16‒21.
  43.  M.J.H. Orzáez, Róchaz J. Sola, and A. Gago-Calderon, “Electrical consequences of large-scale replacement of metal-halide by LED luminaires”, Light. Res. Technol. 50, 282–293 (2016).
  44.  M.H.J. Bollen, S.K. Rönnberg, E.O.A. Larsson, M. Wahlberg, and C.M. Lundmark, “Harmonic Emission from Installations with Energy- Efficient Lighting”, Proceedings of the 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, Portugal, 2011, pp. 1‒6.
  45.  EN 50160:2007 “Voltage Characteristics of Electricity Supplied by Public Distribution Systems”, European Union: Brussels, Belgium, (2007).
  46.  R. Sikora, P. Markiewicz, and W. Pabjańczyk, “Computing Active Power Losses Using a Mathematical Model of a Regulated Street Luminaire”, Energies 11, 1386‒1406 (2018).
  47.  R. Sikora, P. Markiewicz, and W. Pabjańczyk, “The Active Power Losses in the Road Lighting Installation with Dimmable LED Luminaires”, Sustainability10, 4742‒4760 (2018).
  48.  IEC 60287-1-1, Electric Cables – Calculation of current rating – calculation of losses – Section 1: General, (2006).
  49.  IEEE Std. 1459-2010. Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions, (2010).
  50.  Ustawa z dnia 20 maja 2016 r. o efektywności energetycznej, Dz.U. 2016 poz. 831.
  51.  The Energy Effic. Directive (2012/27/EU).
  52.  R.C. Degeneff, T.M. Halleran, T.M. McKernan, and J.A. Palmer, “Pipe – type cable ampacities in the presence of Harmonics”, IEEE Trans. Power Deliv. 8, 1689 –1695 (1993).
  53.  C. Demoulias, D.P. Labridis, P.S. Dokopoulos, and K. Gouramanis, “Ampacity of Low-Voltage Power Cables Under Nonsinusoidal Currents”, IEEE Trans. Power Deliv. 22, 584‒594 (2007).
  54.  J.J. Desmet, G. Vanalme, R. Belmans, and D. Van Dommelen, “Simulation of losses in LV cables due to nonlinear loads”, 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 2008, pp. 785‒790.
  55.  A. Hiranandani, “Calculation of cable ampacities including the effects of harmonics”, IEEE Industry Applications Magazine 4, 42‒51 (1998).
  56.  Z. Gabryjelski and Z. Kowalski, Sieci i urządzenia oświetleniowe. Zagadnienie wybrane, Wydawnictwo Politechniki Łódzkiej, Łódź, 1997.
  57.  EN 13201-5:2015. Light and lighting. Road lighting – Part 5: Energy performance indicators.
  58.  “Electricity price statistics”. [Online] Available: https://ec.europa.eu/eurostat/statistics-explained/pdfscache/45239.pdf.
  59.  Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, “Wskaźniki emisyjności CO2, SO2, NOx, CO i pyłu całkowitego dla energii elektrycznej”. [Online] Available: http://www.kobize.pl/ [in Polish].

Date

27.04.21

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.137194

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; Early Access; e137194
×