Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 30
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The results of research of nitrate concentration and loads in the Strzcgomka River have been presented. The researches were carried out in two sampling points: on the inflow and outflow or Dobromierz reservoir. Nitrate concentrations and loads have been described. The influence or reservoir on water quality of the Strzegomka River has been characterised. Great seasonal trends of analysed indicators have been indicated. The influence of improper use of organic fertiliser on the Strzegomka River water quality and eutrophication of Dobromierz reservoir has been pointed out.
Go to article

Authors and Affiliations

Krzysztof Lejcuś
Download PDF Download RIS Download Bibtex

Abstract

This study illustrates the benefits of statistical techniques to analyze spatial and temporal variations in water quality. In this scope water quality differentiation caused by anthropogenic and natural factors in the Tahtali and Balçova reservoirs in western Turkey was investigated using discriminant analysis-DA, Mann Whitney U techniques. Effectiveness of pollution prevention measures was analyzed by Mann Kendall and Sen’s Slope estimator methods. The water quality variables were divided into three groups as physical-inorganic, organic and inorganic pollution parameters for the study. Results showed that water quality between reservoirs was differentiated for “physical-inorganic” and “organic pollution” parameters. Degree of influence of water quality by urbanization was higher in the Tahtali reservoir and in general, no trend detection at pollution indicators explained by effective management practices at both sites.

Go to article

Authors and Affiliations

Hülya Boyacioglu
Download PDF Download RIS Download Bibtex

Abstract

The Netherlands has a long tradition in water management, mainly stemming from the geography of the country. The ‘struggle with water’ has been organised from medieval times by the water boards (waterschappen), which are the oldest democratic institutions in the Netherlands. Nowa-days the water boards, 27 in the whole of the Netherlands, are not only responsible for flood protec-tion and regulation of water levels, but for water quality management and waste water treatment as well. In the years in which the WFD implementation has been underway in the Netherlands, several issues have arisen. Cooperation between all levels of government is key. This requires as clear as possible divisions of competences between the various parties involved. It also takes much time, es-pecially in a process in which many matters have to be invented ‘on the fly’, such as criteria for des-ignating water bodies, ecological standards, and the formulation of MEP and GEP.

Go to article

Authors and Affiliations

Thomas Ietswaart
Download PDF Download RIS Download Bibtex

Abstract

Water quality is an environmental priority for irrigation in rainfed agriculture. Recently, water quality has been affect-ed by the uncontrolled disposal of wastewater, the use of chemical fertilizers in agriculture and, most significantly, by the excessive exploitation of water resources during the low season. The basin of the Maffragh in the Algerian north-east real is fed by two main rivers: Wadi El Kebir East and Bounnamoussa. From its source, the stream is continually contaminated with domestic and agricultural discharges through the tributaries causing a significant deterioration in water quality. In or-der to know the current state of water quality in the Maffragh basin and to determine its suitability for irrigation without any prior treatment, research has been conducted in the two streams at representative sampling points in catchment areas used for irrigating crops. To assess the quality of water and detectable compounds monitoring, laboratory methods are used. The various volumetric and colorimetric assays were carried out according to Jean Rodier. Organic parameters such as ni-trites, ammonium and phosphates, were measured using a UV/VIS 6705 JENWAY spectrophotometer, at wavelengths of 543 nm, 630 nm and 880 nm respectively for nitrites, ammonium and phosphates. The BOD5 and COD parameter was measured using a DIN EN 1899-1-H51 spectrophotometer and DIN ISO15705: 2002 spectrophotometer. The performed analyses on conductivity shows oscillating values ranging between 425 and 495 μS∙cm–1 for January 2018, while for the low water level of July 2018 the conductivity varies between 433 and 796 μS∙cm–1; this parameter is determinant for water quality assessment and its use for irrigation. Beside the conductivity test, the Riverside–Wilcox diagram was applied, to combine conductivity and sodium absorption rate (SAR). The obtained results of the two seasons show satisfactory results in the applicability of the water to irrigate in the basin.
Go to article

Bibliography

AL-OTHMAN A.A. 2019. Evaluation of the suitability of surface water from Riyadh Mainstream Saudi Arabia for a variety of uses. Arabian Journal of Chemistry. Vol. 12(8) p. 2104–2110. DOI 10.1016/j.arabjc.2015.01.001.
ASHRAF M.A., MAAH J., YUSOFF I. 2010. Water quality characterization of Varsity Lake. E-Journal of Chemistry. Vol. 7. Art. ID 396215. DOI 10.1155/2010/396215.
BARNETT M.J., JACKSON-SMITH D., HAEFFNER M. 2018. Influence of recreational activity on water quality perceptions and concerns in Utah: A replicated analysis. Journal of Outdoor Recreation and Tourism. Vol. 22 p. 26–36. DOI 10.1016/ j.jort.2017.12.003.
DERRADJI F., BOUSNOUBRA H., KHERICI N., ROMEO M., CARUBA R. 2007. Impact de la pollution organique sur la qualité des eaux superficielles dans le Nord-Est algerien [Impact of organic pollution on surface water quality in Algerian north-east]. Secheresse. No. 18 p. 7–23. DOI 10.1684/sec.2007.0065.
DERRADJI F., KHERICI N., ROMEO M., CARUBA R. 2004. Aptitude des eaux de la vallée de la Seybouse à l’irrigation (Nord-est algérien) [Aptitude of the Seybouse River valley waters to irrigation (North-East Algeria)]. Sécheresse. No. 15 p. 353–360.
KHERICI N., KHERICI H., ZOUINI D. 1996. La vulnérabilité à la pollution des eaux de la plaine d’Annaba La Mafragh (Nord-Est algerien) [Vulnerability of Annaba plain – Mafragh (northeast Algeria) to water pollution]. Hydrogeologia. Vol. 12(3) p. 5–48.
LEKOUI S., DJORFI S., FOUFOU A., BOUZNAD I.E. 2019. The impact of irrigation water returns on the water quality of Annaba El Tarf aquifers (Northeastern Algeria). Journal of Biodiversity and Environmental Sciences. Vol. 14(6) p. 290–298.
MCKINNEY M.L. 2002. Urbanization, biodiversity, and conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Biosciences. Vol. 52. Iss. 10 p. 883–890. DOI 10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2.
MULLISS R.M., REVITT D.M., SHUTES R.B.E. 1997. The impacts of discharges from two-combined sewer over flows on the water quality of an urban watercourse. Water Science and Technology. Vol. 36. Iss. 8–9 p. 195–199. DOI 10.1016/ S0273-1223(97)00599-4.
NAJAH A.A., EL-SHAFIE A., KARIM,O.A., JAAFAR O. 2009. Prediction of Johor River water quality parameters using artificial neural networks. European Journal of Scientific Research. Vol. 28. No. 3 p. 422–435.
PEÑA-HARO S., LLOPIS-ALBERT C., PULIDO-VELAZQUEZ M., PULIDO-VELAZQUEZ D. 2010. Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study Spain. Journal of Hydrology. Vol. 392(3–4) p. 174–187. DOI 10.1016/j.jhydrol.2010.08.006.
RICHARDS L.A. 1954. Diagnosis and improvement of saline and alkali soils. Agriculture Handbook. 1st ed. Washington D.C. USDA pp. 160.
RODIER J. 2005. L’analyse de l’eau: Eaux naturelles, eaux résiduaires, eau de mer [Water analysis: Natural resources, wastewater, seawater]. 8th ed. Paris, France. Dunod. ISBN 2100496360 pp. 1578.
TAGMA T., HSISSOU Y., BOUCHAOU L., BOURAGBA L., BOUTALEB S. 2009. Groundwater nitrate pollution in Souss-Massa basin (south-west Morocco). African Journal Environmental Science and Technology. Vol. 3(10) p. 301–309. DOI 10.5897/ AJEST09.076
THIOULOUSE J., CHESSEL D., DOLE´DEC S., OLIVIER J.M. 1997. ADE-4: A multivariate analysis and graphical display software. Statistics and Computing Journal. Vol. 7 p. 75–83. DOI 10.1023/A:1018513530268.
WILCOX L.V. 1948. The quality of water for agricultural use. 1st ed. Washington D.C., USA. US Dept. Agriculture Technical Bulletin. Vol. 962 pp. 40.
ZOUINI D. 1997. Ressources en eau de surface pour l’aménagement hydraulique dans le bassin de l’Oued El Kebir (Nord-Est algérien) [Surface water resources for hydraulic development in the Oued El Kebir basin (north-eastern Algeria)]. Sécheresse. No. 8 p. 9–13.


Go to article

Authors and Affiliations

Selwa Boubguira
1
ORCID: ORCID
Derradji Zouini
1
Sayad Lamine
1
Nawel Dali
2

  1. University of Badji Mokhtar, Faculty of Earth Sciences, Geological Research Laboratory (LRG), BP 12 / 23000 Annaba, Algeria
  2. University Abess Laghrour Khenchela, Department of Ecology, Khenchela, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The study area of the Nida valley was examined to investigate variations in groundwater and surface water levels, as well as the interaction between them. In the valley, there were three branches. The two actives were the Nida River itself and the Smuga Umianowicka branch while the Stara Nida branch was dry during the measurement session. Over a 12-month period from June 2021 to June 2022, 7 monitoring points were equipped with piezometers, comprising 5 groundwater points and 2 surface water points. The monitoring frequency was set to 30 minutes. The results of this research indicate that there are significant differences in the water level at the same observed point at different times. This study demonstrates seasonal changes in both surface water and groundwater levels with higher levels in autumn and winter and lower levels in spring and summer, which are closely tied to the changes in meteorological conditions during the research period, such as precipitation and air temperature. The study results also indicate that during summer and winter at the Nida River and its riparian area, losing stream is the primary process occurring in the studied reach. Conversely, during autumn and spring, the main process is gaining stream. At the human-maintained Smuga Umianowicka branch and in its riparian area, losing stream is the main process during summer and autumn, and gaining stream is the main process during spring. During winter, losing stream and gaining stream processes can occur simultaneously, and neither process takes place mainly.
Go to article

Authors and Affiliations

Cong Ngoc Phan
1 2
ORCID: ORCID
Andrzej Strużyński
1
ORCID: ORCID
Tomasz Kowalik
1
ORCID: ORCID

  1. University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, al. Mickiewicza 24/28, 30-059 Kraków, Poland
  2. Vinh University, Institute of Chemistry, Biology and Environment, 182 Le Duan St, Vinh City, Nghe An Province, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to use regenerated activated carbon to adsorb phenol from a river. Coconut shell activated carbon was derived from used tap water filter cartridges. The activated carbon was carbonised and then activated with KOH at 200°C, under a nitrogen atmosphere. The resulting adsorbent was characterised on the basis of nitrogen adsorption by Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) analysis and point of zero charge (pH PZC). The study of periodic adsorption included kinetic and equilibrium modelling, determined the effect of solution pH on efficiency and the possibility of regeneration and reuse of the adsorbent. The efficiency of phenol removal from model water was evaluated, followed by the possibility of their adsorption from a polluted river in Silesia Province. Phenol adsorption followed pseudo-second-order kinetics. The adsorbents showed high adsorption abilities, as determined by the Langmuir isotherm model. The model fits the experimental data well. The concentration of phenol in the river was in the range of 0.45–0.77 mg∙dm– 3, which means that its value was at least five times higher than the standard values. The use of regenerated activated carbon from waste filter cartridges removed phenol from the river by 78% using optimal test parameters.
Go to article

Authors and Affiliations

Anna Marszałek
1
ORCID: ORCID
Ewa Puszczało
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego St, 18, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Today, the uncontrolled abstraction of surface water and groundwater resources has created adverse consequences, which include: extinction of living organisms, land subsidence, salinity of coastal aquifers, increased pumping energy. Therefore, the need to manage available water resources is felt more than ever. Among the various water uses (agriculture, drinking, and industry), agriculture accounts for the bulk of water consumption. Due to the climate change and the growing population, determining the appropriate strategy and technology for irrigation is necessary. In the current study, a simulation model is used to numerically simulate the dynamics of daily soil moisture during the potato crop growing season and to estimate crop production and economic benefits. For climatic data, daily observations of a meteorological station have been used. Results and analyses have been presented for all cases of micro and traditional irrigation methods and agricultural management strategies of non-stress irrigation, low irrigation, and rainfed cultivation. The results showed that in the non-stress irrigation method, crop production and net profit are almost equal in both traditional and micro methods. In the low irrigation method, microtechnology has made crop production and net profit 1.75 times more than traditional technology, which indicates the impact of irrigation technology on crop production.
Go to article

Authors and Affiliations

Ngakan Ketut Acwin Dwijendra
1
ORCID: ORCID
Mahmood Salih Salih
2
ORCID: ORCID
Maria Jade Catalan Opulencia
3
ORCID: ORCID
Larisa Morozova
4
Elena S. Sergushina
5
ORCID: ORCID
Muhammad Noor Asnan
6
ORCID: ORCID
Mustafa Mohammed Kadhim
7 8
ORCID: ORCID
Manoharan Kavitha
9
ORCID: ORCID

  1. Udayana University, Faculty of Engineering, Kampus Bukit, Jl. Raya Kampus Unud Jimbaran, Kec. Kuta Sel., Kabupaten Badung, Bali 80361, Indonesia
  2. University of Anbar, Upper Euphrates Basin Developing Center, Ramadi, Iraq
  3. College of Business Administration, Ajman University, Ajman, United Arab Emirates
  4. Kurgan State Agricultural Academy by T.S. Maltsev, Faculty of Biotechnology, Lesnikovo village, Russia
  5. National Research Ogarev Mordovia State University, Republic of Mordovia, Saransk, Russia
  6. Universitas Muhammadiyah Kalimantan Timur, Faculty of Science and Engineering, Samarinda, Indonesia
  7. Al-Kut University College, Kut, Iraq
  8. The Islamic University, College of Technical Engineering, Najaf, Iraq
  9. Saveetha University, Saveetha School of Engineering, Department of ECE, Chennai, India
Download PDF Download RIS Download Bibtex

Abstract

Bacteria from the Simkaniaceae family are intracellular parasites belonging to the Chlamydiales order, detected in surface waters, drinking water, chlorine water, and in wastewater. Its main representative, Simkania negevensis, is pathogenic to humans and animals, especially fishes, as it principally causes respiratory tract diseases. Bacteria from this family are also capable of surviving and existing in free-living amoebas, omnipresent in the natural environment, which makes them an additional risk for human and animal health. The aim of the present study was to search for representatives of this family in freshwaters from the Odra River and two municipal lakes (Rusałka and Goplana). Out of 100 water samples analysed, the sequence of bacteria of Simkaniaceae family was found just in 1 percent, because phylogenetic analysis revealed that the obtained OdraWCh30 sequence shows 93% similarity to Simkania negevensis strain Z as well as 87% similarity to Candidatus Syngnamydia salmonis isolate Ho-2008 and Candidatus Syngnamydia salmonis isolate VS10102006 and 84-85% similarity to endosymbiont of Xenoturbella westbladi, Simkaniaceae bacterium clone SM081012-5s and Candidatus Syngnamydia venezia strain Pi3-2. This is the first case of detecting sequence of bacteria of Simkaniaceae family in the aquatic environment in Poland.

Go to article

Authors and Affiliations

M. Pawlikowska-Warych
W. Deptuła
Download PDF Download RIS Download Bibtex

Abstract

In the 2008 ablation season, subglacial springs discharge, flow rate and profiling of the proglacial river, physical-chemical parameters (pH, temperature, electrical conductivity) and chemical composition (HCO3−, SO42−, Cl−, NO3−, NO2−, PO43−, Ca2+, Mg2+, Na+, K+, Fetot, Mn2+, Al3+, Zn2+, Pb2+ and SiO2) of water in the Werenskiold Glacier forefield were measured. Chemical composition of groundwater as well as water of lakes, the main watercourse, subglacial outflows and water representing direct meltwater recharge were studied to determine their origin, the depth of circulation and recharge systems. The results indicate that the main source of water in the glacial river were the subglacial outflows in the central part of the glacier. They generated 77% of the total amount of water in the glacier forefield. Direct inflow of groundwater from glacier moraine to proglacial river was marginally low and the water circulation system was shallow, fast and variable. There were no evidences for an important role of deeper than suprapermafrost water circulation systems. The water temperature, especially in the lakes, exceeding the mean daily air temperature during the ablation period, is due to the heating of the ground moraine rocks. A clear difference between groundwater chemical composition and surface water as well as subglacial runoff in terms of major ions, together with the homogeneity of chemical composition of the proglacial river from spring to mouth confirmed the marginal role of groundwater runoff in the drainage of the catchment area. It was confirmed that the chemical composition of groundwater and moraine lakes in the glacier forefield was shaped by geological factors, i.e., mainly chemical weathering of sulphides, carbonates and secondary sulphates. The possibility of secondary iron hydroxide precipitation and a high probability of complex aluminosilicate transformations were also demonstrated.
Go to article

Authors and Affiliations

Magdalena Modelska
1
Sebastian Buczyński
1

  1. University of Wrocław, Institute of Geological Sciences, Plac M. Borna 9, 50-204 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the presented research was to analyse the pollution of the Kozłowa Góra Dam Reservoir

with PCBs (28, 52, 101, 118, 138, 153, 180) and heavy metals (Zn, Cu, Ni, Cd, Pb, Cr). The investigated water

and bottom sediments were sampled from two sampling points in November, 2009. The sampling points were

located in the southern part of the Kozłowa Góra Dam Reservoir. The samples of bottom sediments were taken

from the surface layer of 5 cm thickness. The extraction of PCBs from the bottom sediments was performed

according to the EPA 3550B standard. For the sequential extraction analysis of metals from the sampled bottom

sediments, the method suggested by Tessier was applied. Based on the obtained results the water and bottom

sediments from the Kozłowa Góra Dam Reservoir were polluted with polychlorinated biphenyls. The highest

concentration of the investigated PCB congeners in bottom sediments was determined in the sampling point

No. 1 (2.78 µg/kg d.m.), whereas in the sampling point No. 2 this level was over 20-fold lower which might

result from the inflow of these compounds with the waters of the Brynica river. In both sampling points the investigated bottom sediments were predominated by higher chlorinated PCBs with comparable contents of 86%

and 85%, respectively. The level of pollution in the investigated bottom sediments (calculated per dry matter)

with polychlorinated biphenyls did not exceed the level of TEL (< 0.02 mg/kg). The PEL value (3.5 mg/kg) was

exceeded in the case of cadmium in the bottom sediment from the sampling point No. 2 and also lead (91 mg/kg)

from both sampling points. The first two fractions with the mobile forms of metals are the most sensitive fractions to any changes of the environmental conditions in the benthic zone. In those fractions significant contents

of lead, cadmium, nickel and zinc were observed.

Go to article

Authors and Affiliations

A. Rosińska
L. Dąbrowska
Download PDF Download RIS Download Bibtex

Abstract

In this paper we studied the intensification of the water clarification process on contact clarifiers with quartz sand fil-tering bed, which was modified with a solution of aluminum sulphate coagulant. The modification of the quartz sand filter-ing bed was carried out by applying to the surface of grains of quartz sand solution of coagulant aluminum sulphate with different doses. Investigation of the electrokinetic potential of the filtering material (quartz sand) was carried out by the percolation potential method.

The influence of electrical properties (size and sign of the charge) of the filtering bed itself and suspended solids in the water on the filtration process was studied. The filter material – quartz sand used in contact clarifiers has a negative electric charge. When the electric charge of the particles decreases, that is, as the ζ-potential decreases, the repulsive forces de-crease and it the adhesion of particles becomes possible. This is the process of coagulation of the colloid. The forces of mu-tual gravity between the colloidal particles begin to predominate over the electric repulsive forces at the ζ-potential of thesystem less than 0.03 V.

Modification of quarts filtering bed with a solution of coagulant aluminum sulphate recommended for the purification of surface water allows: to intensify the process of water clarification, to reduce the consumption of reagents by 25–30%, with the obtaining purified water of the required quality, to reduce the production areas necessary for reagent management of treatment facilities, and to reduce the cost of water treatment by 20–25%.

Go to article

Authors and Affiliations

Stanislav S. Dushkin
Serhii Martynov
Download PDF Download RIS Download Bibtex

Abstract

The article focuses on the problem of structure degradation and ecosystem functioning – the urgency that identifies the relevance of operations at a strategic level aimed at providing the integrated assessment of ecological stability of water. Determination of water quality indicators were divided into blocks according to the criteria of salt composition, according to chemical saprobological indicators and the content of specific substances of toxic and radiation action. According to the results of block analysis, the integrated ecological index of water quality was determined by the dependence of water quali-ty on the indicators of ecological stabilization of the landscape and the structure of biotechnical elements. The article de-termines the relationships between worsening quality of surface waters and stabilization or destabilization of the landscape structure. The research was conducted on medium and large streamflows on the Right Bank of Polesie region of the Dnie-per-River cascade within which the tracts of land were identified and the landscape ecological stability (CESL1) and land-scape biotechnical elements coefficients (CESL2) were determined. The retrospective analysis was performed of the sur-face water features on the Right Bank of Polesie region of the Dnieper- River cascade and the main trends in salt block in-dicators, trophic and saprobiological block indicators, and in the content of toxic and radioactive substances at observation sites were estimated. Based on obtained data, the integrated assessment in trends of surface water quality on the Right Bank of Polesie region of the Dnieper- River cascade was made and the main parameters and scale of stabilization and destabili-zation of landscape impact on the water quality formation were defined.

Go to article

Authors and Affiliations

Tetyana P. Fedoniuk
Roman H. Fedoniuk
Ludmila D. Romanchuk
Anatolyy A. Petruk
Viktor M. Pazych
Download PDF Download RIS Download Bibtex

Abstract

The environmental assessment of the surface water quality of the Western Bug River has been made using the system of classification quality of land surface water of Ukraine in accordance with the approved methodology, which allows comparing water quality of separate areas of water objects of different regions. The calculation of the environmental as-sessment of water quality has been carried according to three blocks: block of salt composition, block of trophic and sapro-bic (ecological and sanitary) indicators and block of indicators of content of specific toxic substances. The results are pre-sented in the form of a combined environmental assessment, based on the final conclusions of the three blocks and consists in calculating the integral ecological index. Comprehensive studies of changes in the water quality of the Western Bug Riv-er have been conducted within the territory of Ukraine for a long-term period. The water quality of the river on the final values of the integral indicators of the ecological condition corresponded mainly to 4nd category of the 3rd class – the wa-ter is “satisfactory” by condition and “little polluted” by degree of purity (except for points of observation that located within the Volyn region, where the water quality corresponded to 3rd category and the 2nd class. It is “good” by condition and “fairly clean” by the degree of purity). Visualization and part of the analysis are performed using GIS technologies in the software of the ArcGIS 10.3.

Go to article

Authors and Affiliations

Igor Gopchak
Tetiana Basiuk
Ihor Bialyk
Oleg Pinchuk
Ievgenii Gerasimov
Download PDF Download RIS Download Bibtex

Abstract

The aspects of surface stability and groundwater exchange recognized by many researchers due to the intensification of agriculture and industry (manifested in, e.g., regulation and dredging of riverbed sediments of rivers) are now widely discussed on the international forum of water policy and management. It is essential to assess the spatial variability of water exchange through the river length and cross sections for the preparation of data and calculation of the groundwater flow model. This article presents research which describes the spatial distribution of the surface water-groundwater interaction within the river cross-section. Two measurement series were carried out to describe its variability. Additionally, a groundwater flow model was developed to simulate and represent the variable nature of water exchange in the hyporheic zone in the river’s cross-section. The model was successfully verified by means of measurements of water flux in the hyporheic zone. The precise spatial description of this variability is the first step to determine the possibility of introducing this variable in an accurate manner, within the limits of measurement uncertainties or simulation assumptions, in the construction of mathematical models of groundwater flow.
Go to article

Bibliography

1. Anibas, C., Verbeiren, B., Buis, K., Chormański, J., De Doncker, L., Okruszko, T., Meire, P. & Batelaan, O. (2012). A hierarchical approach on groundwater-surface water interac-tion in wetlands along the upper Biebrza River, Poland. Hydrol. Earth Syst. Sci. , 16, pp. 2329–2346. https://doi.org/10.5194/hess-16-2329-2012
2. Baraniecka, M. D., (1976). Description of the detailed geological map of Poland 1:50 000 Sheet Otwock, (in Polish).
3. Boano, F., Camporeale, C., Revelli, R. & Ridolfi, L. (2006). Sinuosity-driven hyporheic exchange in meandering rivers. Geophys. Res. Lett. , 33. https://doi.org/10.1029/2006GL027630
4. Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L. & Wörman, A. (2014). Hypohreic flow and transport processes: Mechanisms models, and biogeo-chemical implications. Rev. Geophys. , 52, pp. 603–679. https://doi.org/10.1002/2012RG000417
5. Brunetti, E., Jones, J. P., Petitta, M. & Rudolph, D. L. (2013). Assessing the impact of large-scale dewatering on fault-controlled aquifer systems: a case study in the Acque Albule basin (Tivoli, central Italy). Hydrogeol. J. , 21, pp. 401–423. https://doi.org/10.1007/s10040-012-0918-3
6. Brunke, M. & Gonser, T. (1997). The ecological significance of exchange processes be-tween rivers and groundwater. Freshw. Biol. , 37, pp. 1–33. https://doi.org/10.1046/j.1365-2427.1997.00143.x
7. Duda, R., Witczak, S. & Żurek, A. (2011). Map of Polish groundwater sensitivity to pol-lution 1: 500,000 - Methodology and textual explanations. Akademia Górniczo–Hutnicza im. Stanisława Staszica w Krakowie Wydział Geologii, Geofizyki i Ochrony Środowiska, ISBN: 13 978-83-88927-24-9 (in Polish).
8. Elango, L., Brindha, K., Kalpana, L. & Sunny, F. (2012) Groundwater flow and radionu-clide decay-chain transport modelling around a proposed uranium tailings pond in In-dia. Hydrogeol. J. , 20, pp. 797–812. https://doi.org/10.1007/s10040-012-0834-6
9. Grodzka-Łukaszewska, M., Nawalany, M. & Zijl, W. (2017). A Velocity-Oriented Ap-proach for Modflow. Transp. Porous Media, 119, pp. 373–390. https://doi.org/10.1007/s11242-017-0886-0
10. Grygoruk, M. & Acreman, M. (2015). Restoration and management of riparian and river-ine ecosystems: Ecohydrological experiences, tools and perspectives. Ecohydrol. Hydrobiol. , 15, pp. 109-110. https://doi.org/10.1016/j.ecohyd.2015.07.002
11. Harvey, J. & Gooseff, M. (2015). River corridor science: Hydrologic exchange and eco-logical consequences from bedforms to basins. Water Resour. Res., 51, pp. 6893–6922. https://doi.org/10.1002/2015WR017617
12. Hendriks, D. M. D., Okruszko, T., Acreman, M., Grygoruk, M., Duel, H., Buijse, T., Schutten, J., Mirosław-Świątek, D., Henriksen, H.J., Sanches-Navarro, R., Broers, H.P., Lewandowski, J., Old, G., Whiteman, M., Johns, T., Kaandorp, V., Baglioni, M., Holgersson, B. & Kowalczyk, A. (2015). Bringing groundwater to the surface; Groundwater-river interactions as driver for river ecology. D77 Policy Discuss. Pap. no 2
13. Hidayat, H. N. & Permana, M. G. (2018). Geothermal reservoir simulation of hot sedi-mentary aquifer system using FEFLOW®. IOP Conference Series: Earth and Envi-ronmental Science, 103, 12002, DOI: https://doi.org/10.1088/1755-1315/103/1/012002
14. IMGW-PIB 2016 Report on the implementation of flood hazard maps and flood risk maps, appendix 1, (in Polish)
15. Iqbal, Z., MacLean, R. T., Taylor, B. D., Hecker, F. J. & Bennett, D. R. (2002). Seepage losses from irrigation canals in southern Alberta. Can. Biosyst. Eng. / Le Genie des Biosyst. au Canada, 44, pp. 21–27
16. Israelsen, O. W. & Reeve, R. C. (1944). Bulletin No . 313 - Canal Lining Experiments in the Delta Area, Utah Canal Lining Experiments - the Delta Area, Utah. UAES Bull 52
17. Janik, B., Kowalik, A. & Marciniak, M. (1989). Infiltrometric measurements as an estima-tion base of the quota of river water in the feeding of the drainage intake Reda-Pieleszewo. Przegląd Geologiczny, 37, pp. 511–516 (in Polish).
18. Jekatierynczuk-Rudczyk, E. (2007). The hyporheic zone, its functioning and meaning. Kosmos. 56, pp. 181-196 (in Polish)
19. Kasperek, R., Mokwa1, M. & Wiatkowski, M. (2012). Modelling of pollution transport with sediment on the example of the Widawa river. Archives of Environmental Protection, 39, 2, pp.29-43, DOI: 10.2478/aep-2013-0017
20. Lee, D. R. (1977). A device for measuring seepage flux in lakes and estuaries1. Limnol. Oceanogr. , 22, pp. 140–147. https://doi.org/10.4319/lo.1977.22.1.0140
21. Magliozzi, C., Grabowski, R. C., Packman, A. I. & Krause, S. (2018) Toward a concep-tual framework of hyporheic exchange across spatial scales. Hydrol. Earth Syst. Sci., 22, pp. 6163–6185 https://doi.org/10.5194/hess-22-6163-2018
22. Marciniak, M. & Chudziak, Ł. (2015). A new method of measuring the hydraulic con-ductivity of the bottom sediment. Przegląd Geologiczny, 63, pp. 919-925 (in Polish)
23. Marciniak, M., Szczucińska, A. & Kaczmarek, M. (2017). Variability of the hydraulic conductivity in the hyporheic zone in the light of laboratory research). Przegląd Geologiczny, 65, pp. 1115-1120 (in Polish)
24. McDonald, M. G. & Harbaugh, A. W. (1984). A modular three-dimensional finite-difference ground-water flow model. U.S. Geological Surv.
25. Nawalany, M. (1993). Mathematical Modeling of River-Aquifer Interactions, Report SR 349. HR Wallingford.
26. Pandian, R. S., Nair, I. S. & Lakshmanan, E. (2016). Finite element modelling of a heavi-ly exploited coastal aquifer for assessing the response of groundwater level to the changes in pumping and rainfall variation due to climate change. Hydrol Res., 47, pp. 42–60. https://doi.org/10.2166/nh.2015.211
27. Peralta-Maraver, I., Reiss, J. & Robertson, A. L. (2018). Interplay of hydrology, commu-nity ecology and pollutant attenuation in the hyporheic zone. Sci. Total Environ., 610–611, pp. 267–275. https://doi.org/10.1016/j.scitotenv.2017.08.036
28. Pietrzak, K., Przybylski, B., & Repliński, M. (2018). Environmental impact assessment of the Environmental Protection Program for the Latowicz municipality until 2021 (in Polish).
29. Revelli, R., Boano, F., Camporeale, C. & Ridolfi, L. (2008). Intra-meander hyporheic flow in alluvial rivers. Water Resour. Res., 44. https://doi.org/10.1029/2008WR007081
30. Robinson, A. R., & Rohwer, C. (1959). Measuring seepage from irrigation channels. USDA Tech. Bull. 1203.
31. Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 11 października 2019 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm jakości dla substancji priorytetowych (Regulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the classification of ecological status, ecological potential and chemi-cal status and on the classification of surface water bodies and environmental quality standards for priority substances) (in Polish)
32. Schmadel, N. M., Ward, A. S. & Wondzell, S. M. (2017). Hydrologic controls on hyporheic exchange in a headwatermountain stream. Water Resour. Res. , 53, pp. 6260-6278. https://doi.org/10.1002/2017WR020576
33. Siergieiev, D., Lundberg, A. & Widerlund, A. (2014). Hyporheic water exchange in a large hydropower-regulated boreal river – directions and rates. Hydrol. Res. , 45, pp. 334–348. https://doi.org/10.2166/nh.2013.011
34. Ward, A. S. (2016). The evolution and state of interdisciplinary hyporheic research. WIREs Water, 3, pp. 83–103. https://doi.org/10.1002/wat2.1120
35. Worstell, R. V. & Carpenter, C. D. (1969). Improved Seepage Meter Operation for Lo-cating Areas of High Water Loss in Canals and Ponds. 58th Annu. Oregon Reclam. Congr.
36. Zieliński, P. & Jekatierynczuk-Rudczyk, E. (2010). Dissolved organic matter transfor-mation in the hyporheic zone of a small lowland river. Oceanol. Hydrobiol. Stud. , 39, pp. 97–103. https://doi.org/10.2478/v10009-010-0021-9
38. Zijl, W. & Nawalany, M. (1993) Natural groundwater flow. Lewis Publishers
Go to article

Authors and Affiliations

Maria Grodzka-Łukaszewska
1
Zofia Pawlak
1
Grzegorz Sinicyn
1

  1. Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The intensification of agricultural production is one of the factors determining economic development. Increasing mechanisation and use of fertilisers in agriculture lead to higher yields, but at the same time they can pose a threat to the environment. The overuse of chemical fertilisers contributes to increased concentration of nutrients in agricultural runoff. One of such areas is the Szreniawa River catchment, the study area located in the southern part of Poland. In this catchment, intensive mostly mechanical ploughing is applied in, for instance, vegetable production. The area has loess soils, which with intensive ploughing are susceptible to erosion. The study aims to determine changes in the quality of flowing waters against the background of agricultural production and land-use characteristics. Surface waters were classified as class II and occurred at all analysed points. The highest concentrations of N-NO3, N-NH4 and P-PO4 were found at a point in the middle of the catchment (lower part of research area). There, the lowest concentrations were recorded in 2018, which was related to the amount of precipitation during the growing season. On the other hand, the volume of plant and animal production closely correlated with the quality of surface water in the area. This was also confirmed by the land use structure. In conclusion, intensive agricultural production, mainly in terms of plough tillage causes significant hazards associated with soil erosion especially on agriculturally sensitive soils, although it provides good yields.
Go to article

Authors and Affiliations

Stanisław K. Lach
1
ORCID: ORCID
Agnieszka Kowalczyk
2
ORCID: ORCID
Marek T. Kopacz
1
ORCID: ORCID
Zbigniew Kowalewski
1
ORCID: ORCID
Mateusz Jakubiak
1
ORCID: ORCID
Robert. Mazur
1
ORCID: ORCID
Beata Grabowska-Polanowska
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Department of Environmental Management and Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  2. Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
Download PDF Download RIS Download Bibtex

Abstract

The very wet conditions of recent years in Europe have made it clear that measures will have to be taken in this century to prevent flooding. The question is how to manage groundwater in order to reduce the anticipated increased hydrological risk. Furthermore the surface water quality in the Netherlands is insufficient to meet the standards of the Water Framework Directive. The required improvements are difficult to reach, because the diffuse loads of nutrients from agricultural land can not be easily reduced. This demands for innovative solutions with respect to improve the surface wa-ter quality. In this pilot study the focus is on the purification in reed fields and use it as well to reduce the effects of the anticipated climate change. An experimental evidence on a practical scale is lacking and therefore in the woodland area of Lankheet in the eastern part of the Netherlands, 3 ha has been planted with reeds to purify the river water. The aim of the study is further to store the purified water in the groundwater in order to reduce climate change effects. For the hydrological situation a scenario study was set up, using a regional hydrological model to simulate the groundwater flow together with the water flow in a network of water courses. The analysis will give knowledge on the multifunc-tional use of such a system.

Go to article

Authors and Affiliations

Erik P. Querner
Henry M. Mulder
Download PDF Download RIS Download Bibtex

Abstract

Flooding in the northern part of The Netherlands has caused serious economic threats to densely populated areas. Therefore a project has been carried out in a pilot area to assess the retention of water in two river basins as a way to reduce flooding. The physically-based groundwater and sur-face water model SIMGRO was used to model the hydrology of the basins. The model was calibrated using discharges and groundwater levels. Scenarios of measures to assess the possibility of retaining water in the basin were then defined and tested. The first measure was the retention of higher dis-charges using culverts or gates in the upstream part of the basin. The second measure was to make the streams shallower and thereby, increase flood plain storage. The last measure was flood water storage in a designated area in the downstream part of one basin. The analysis indicates that holding water in the upstream parts of the basins proved to be feasible and can result in significant reductions of peak flows.

Go to article

Authors and Affiliations

Erik P. Querner
Download PDF Download RIS Download Bibtex

Abstract

The results of a research into the scale and consequences of the degradation of aquatic ecosystems in Ukrainian Polesie have been detected in article, and the areas of increased anthropogenic pressure have been identified which greatly affect the condition and number of aquatic macrophytes. The biodiversity of sites with different anthropogenic load was evaluated using the biodiversity criteria. In the research, the structural and functional features of macrophytic species diversity within Teteriv River ecological corridor as a typical river landscape of Ukrainian Polesie were determined and described, the floristic composition was determined. Within the ecological zones, the number of species and their projective coverage in areas with different anthropogenic pressures within Teteriv River ecological corridor were determined. The basic criteria for the implementation of deferred biomonitoring based on the analysis of the dynamics of the spe-cies composition of the phytocoenoses of Teteriv River ecological corridor on the indicators of ecological stability and plasticity using the species-specific criteria, are: Margalef species richness index, Sørensen–Dice index, Shannon diversity index, Simpson’s index, and Pielou’s evenness index. Based on the results, correlation dependencies have been constructed, which will allow to obtain data on the stability of the development of aquatic ecosystems according to the data of species surveys. Interconnections between biodiversity indicators and indicators of surface water quality within the Ukrainian Polesie were found; they are the fundamental component of a long-term monitoring of the stability in the development of aquatic phytocenoses.

Go to article

Authors and Affiliations

Tetiana P. Fedonyuk
Roman H. Fedoniuk
Anastasiia A. Zymaroieva
Viktor M. Pazych
Ella O. Aristarkhova
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Loads of N-NO3, N-NH4, PO4 and BOD5 carried in surface waters of the upper Dunajec catchment basin (at the section in Krościenko) in the years 1985–1998 are presented in this paper. Water quality of the Biały Dunajec (in Szaflary), Czarny Dunajec (in Ludźmierz) and Dunajec (in Krościenko) was characterised. Annual loads discharged from the area per km2 of the catchment were calculated from mean annual flows (SQ) and concentrations of studied components in river waters. Concentration of N-NO3 in waters of the Biały Dunajec was more than two times higher and that of phosphates – over seven times higher than the respective concentrations in the Czarny Dunajec and Dunajec. Different population density, numerous tourists and low level of water and sewage infra-structure were responsible for these differences.

Go to article

Authors and Affiliations

Sylwester Smoroń
Stanisław Twardy
Download PDF Download RIS Download Bibtex

Abstract

The results of the study of the macrophytes of the rivers Turia, Vyzhivka and Tsyr, the right-bank tributaries of the upper reaches of the Pripet River, are presented. The species composition of aquatic and coastal aquatic vascular plants was investigated during the vegetation seasons of 2018 and 2019 at 9 observation points located along the rivers from the source to the mouth. The most numerous species composition, 57 species, was found in the Turia River, 36 in the Vyzhivka River, and 28 species were identified in the Tsyr River. The macrophyte index for rivers (Pol.: makrofitowy indeks rzeczny – MIR) was determined from the results, and the ecological state of the rivers was assessed according to the methodology of the macrophyte assessment of rivers (Pol.: makrofitowa metoda oceny rzek – MMOR). The investigation showed that water quality in the Turia River on sites No. 1, 3 and 4 belongs to class III, satisfactory category. The surface water quality on site No. 2 of the Turia River belongs to class II, a good category. The water quality in the Vyzhivka River on all test sites belongs to class II, a good category, which testifies to favourable ecological conditions for the development of higher aquatic plants along the whole course. The water quality in the Tsyr River on test site No. 8 (Kamin-Kashyrskyi, upper course) corresponds to class II, good category. On test site No. 9 (middle course), the quality of surface waters of the Tsyr River worsens to the class III, satisfactory category.
Go to article

Authors and Affiliations

Myroslav S. Malovanyу
1
ORCID: ORCID
Maria Boіaryn
2
ORCID: ORCID
Oksana Muzychenko
2
ORCID: ORCID
Oksana Tsos
2
ORCID: ORCID

  1. Lviv Polytechnic National University, Viacheslav Chornovil Institute of Sustainable Development, Department of Ecology and Sustainable Environmental Management, S. Bandera St, 12, 79013, Lviv, Ukraine
  2. Lesya Ukrainka Volyn National University, Faculty of Chemistry, Ecology and Pharmacy, Department of Ecology and Environmental Protection, Lutsk, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Monitoring of surface waters within the transboundary section of the Western Bug River showed, that during 2014–2018, a significant excess of the maximum permissible concentration (MPC) was observed for some substances for fish ponds. As a result of this, the water in the river for these substances was rated as “dirty” in terms of purity and correspond-ed to water quality class IV, namely: phosphorus was observed to exceed the MPC at the observation point Ambukіv vil-lage in 2015 (9.7 times), for manganese – an excess of the MPC at the observation point Ambukіv village in 2018 (9.7 times) and in point Zabuzhzhia village in 2014 (7.9 times), 2015 (8.0 times), 2017 (7.1 times), 2018 (8.3 times); for the total iron – the exceeding of MPC at the observation point Ambukіv village in 2016 (5.95 times) and 2017 (6.13 times); at the observation point Ustilug town in 2016 (5.23 times); in the observation point Zabuzhzhia village in 2016 (9.44 times) and 2017 (5.27 times). The assessment of the surface waters based on the determination of the pollution factor showed that during the study period their quality did not deteriorate but did not meet the norms. In general, surface waters of the river correspond to the second class of quality and are characterized as “poorly polluted” waters by the level of pollution.

Go to article

Authors and Affiliations

Igor Gopchak
Andrii Kalko
Tetiana Basiuk
Oleg Pinchuk
ORCID: ORCID
Ievgenii Gerasimov
ORCID: ORCID
Oksana Yaromenko
Viktor Shkirynets
Download PDF Download RIS Download Bibtex

Abstract

Developments in agriculture, industry, and urban life have caused the deterioration of water resources, such as rivers and reservoirs in terms of their quality and quantity. This includes the Saguling Reservoir located in the Citarum Basin, Indonesia. A review of previous studies reveals that the water quality index ( WQI) is efficient for the identification of pollution sources, as well as for the understanding of temporal and spatial variations in reservoir water quality. The NSFWQI (The National Sanitation Foundation water quality index) is one of WQI calculation methods. The NSFWQI is commonly used as an indi-cator of surface water quality. It is based on nitrate, phosphate, turbidity, temperature, faecal coliform, pH, DO, TDS, and BOD. The average NSFWQI has been 48.42 during a dry year, 43.97 during a normal year, and 45.82 during a wet year. The WQI helped to classify water quality in the Saguling Reservoir as “bad”. This study reveals that the strongest and most significant correlation between the parameter concentration and the WQI is the turbidity concentration, for which the coeffi-cient correlation is 0.821 in a dry year, and faecal coli, for which the coefficient correlation is 0.729 in a dry year. Both parameters can be used to calculate the WQI. The research also included a nitrate concentration distribution analysis around the Saguling Reservoir using the Inverse Distance Weighted method.
Go to article

Authors and Affiliations

Mariana Marselina
1
ORCID: ORCID
Anwar Sabar
1
Nurul Fahimah
1
ORCID: ORCID

  1. Bandung Institute of Technology, Faculty of Civil and Environmental Engineering, Jl. Ganesha No 10, Bandung, Indonesia

This page uses 'cookies'. Learn more