Szczegóły
Tytuł artykułu
Diffusive–inertial droplet separation model from two-phase flowTytuł czasopisma
Archives of ThermodynamicsRocznik
2021Wolumin
vol. 42Numer
No 3Autorzy
Afiliacje
Mikielewicz, Jarosław : Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland ; Dolna, Oktawia : Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland ; Kwidziński, Roman : Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, PolandSłowa kluczowe
two-phase flow ; Diffusive-inertial droplet separation ; Stopping distanceWydział PAN
Nauki TechniczneZakres
141-158Wydawca
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesBibliografia
[1] Sedler B., Mikielewicz J.: A simplified analytical flow-boiling crisis mode. Trans. Inst. Fluid-Flow Mach. 76(1978), 3–10 (in Polish).[2] Walley P., Hutchinson P., Hewitt G.F.: The calculation of critical heat flux in forced convection boiling. In: Proc. 5th Int. Heat Transfer Conf., Vol. II, Tokyo 1974.
[3] Kubski P., Mikielewicz J.: Approximated analysis of the drag force of the droplet evaporating within the fluid flow. Trans. Inst. Fluid-Flow Mach. 81(1981), 53–66 (in Polish).
[4] Mikielewicz J.: A simplified analysis of Magnus lift force impact on a small droplets separation from the two-phase flow. Trans. Inst. Fluid-Flow Mach. 75(1978), 63–71 (in Polish).
[5] Ranhiainen P.O., Stachiewicz J.W.: On the deposition of small particles from turbulent streams. J. Heat Transfer. 92(1970), 1, 169–177.
[6] Dolna O., Mikielewicz J.: Separation of droplets in the field of a boundary layer. J. Eng. Phys. Thermophys. 92(2019), 5, 1202–1206.
[7] Pourhashem H., Owen M.P., Castro N.D., Rostami A.A.: Eulerian modeling of aerosol transport and deposition in respiratory tract under thermodynamic equilibrium condition. J. Aerosol Sci. 141(2020), 105501.
[8] Worth Longest P., Xi J.: Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. J. Aerosol Sci. 38(2007), l, 111–130.
[9] Wang Y., Yu Y., Hu D., Xu D., Yi L., Zhang Y., Zhang S.: Improvement of drainage structure and numerical investigation of droplets trajectories and separation efficiency for supersonic separators. Chem. Eng. Process. – Process Intensific. 151(2020), 107844.
[10] Ganic E.N., Rohsenow W.M.: Dispersed flow heat transfer. Int. J. Heat Mass Tran. 20(1977), 8, 855-866.
[11] Beek W.J., Muttzal K.M.: Transport Phenomena. Wiley 1975.
[12] Hutchinson P., Hewitt G.F., Ducler A.E.: Deposition of liquid or solid dispersions from turbulent gas stream: a stochastic model. Chem. Eng. Sci. 26(1971), 3, 419–439.
[13] Farmer R.A., Griffith P., Rohsenow W.M.: Liquid droplet deposition in twophase flow. J. Heat Transfer 92(1970), 4, 587–594.
[14] Forney L.J., Spielman L.A.: Deposition of coarse aerosols from turbulent flow. J. Aerosol Sci. 5(1974), 3, 257–271.
[15] Friedlander S.K., Johnstone H.F.: Deposition of suspended particles from turbulent gas streams. Ind. Eng. Chem. 49(1957), 7, 1151–1156.
[16] Ilori T.A.: Turbulent deposition of particles inside pipes. PhD thesis, Univ. Minnesota, Minneapolis – Saint Paul 1971.
[17] Sehmel G.A.: Aerosol deposition from turbulent airstreams in vertical conduits. Pacific Northwest Lab. Tech. Rep. BNWL-578, Richland 1968.
[18] McCoy D.D., Hanratty T.J.: Rate of deposition of droplets in annular two-phase flow. Int. J. Multiphas. Flow 3(1977), 4, 319–331.
Data
2021.11.09Typ
ArticleIdentyfikator
DOI: 10.24425/ather.2021.138113 ; ISSN 1231-0956 ; eISSN 2083-6023Rada naukowa
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
A. C. Benim, Duesseldorf University of Applied Sciences, Germany
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China