Details

Title

Operation of Fabry-Perot laser with nonlinear PT-symmetric mirror

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

6

Affiliation

Mossakowska-Wyszyńska, Agnieszka : Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland ; Witoński, Piotr : Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland ; Szczepański, Paweł : Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland ; Szczepański, Paweł : National Institute of Telecommunications, ul. Szachowa 1, 04-894 Warsaw, Poland

Authors

Keywords

lasers ; integrated optics ; nonlinear optics

Divisions of PAS

Nauki Techniczne

Coverage

e139202

Bibliography

  1. C.M. Bender and S. Boettcher, “Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry,” Phys. Rev. Lett., vol. 80, no. 24, pp. 5243–5246, Jun. 1998, doi: 10.1103/PhysRevLett.80.5243.
  2. Kulishov, J.M. Laniel, N. Bélanger, J. Azaña, and D.V. Plant, “Nonreciprocal waveguide Bragg gratings,” Opt. Express, vol. 13, no. 8, pp. 3068–3078, Apr. 2005, doi: 10.1364/OPEX.13.003068.
  3. Kulishov, B. Kress, and H.F. Jones, “Novel optical characteristics of a Fabry-Perot resonator with embedded PT-symmetrical grating,” Opt. Express, vol. 22, no. 19, pp. 23164–23181, Sep. 2014, doi: 10.1364/OE.22.023164.
  4. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett., vol. 106, no.  21, p. 213901, May 2011, doi: 10.1103/PhysRevLett.106.213901.
  5. K.G. Makris, R. El-Ganainy, D.N. Christodoulides, and Z.H. Musslimani, “Beam Dynamics in PT Symmetric Optical Lattices,” Phys. Rev. Lett., vol. 100, no. 10, p. 103904, Mar. 2008, doi: 10.1103/PhysRevLett.100.103904.
  6. M.C. Zheng, D.N. Christodoulides, R. Fleischmann, and T. Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A, vol. 82, no. 1, p. 010103, Jul. 2010, doi: 10.1103/PhysRevA.82.010103.
  7. Sun, W. Tan, H. Li, J. Li, and H. Chen, “Experimental Demonstration of a Coherent Perfect Absorber with PT Phase Transition,” Phys. Rev. Lett., vol. 112, no. 14, p. 143903, Apr. 2014, doi: 10.1103/PhysRevLett.112.143903.
  8. El-Ganainy, K.G. Makris, D.N. Christodoulides, and Z.H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett., vol. 32, no. 17, pp. 2632–2634, Sep. 2007, doi: 10.1364/OL.32.002632.
  9. Ge and R. El-Ganainy, “Nonlinear Modal Interactions in PT-Symmetric Lasers,” in Frontiers in Optics 2016, 2016, p.  JW4A.186, doi: 10.1364/FIO.2016.JW4A.186.
  10. Feng, J. Ma, Z. Yu, and X. Sun, “Circular Bragg lasers with radial PT symmetry: design and analysis with a coupled-mode approach,” Photonics Res., vol. 6, no. 5, pp. A38–A42, May 2018, doi: 10.1364/PRJ.6.000A38.
  11. Botey, W.W. Ahmed, J. Medina, R. Herrero, and K. Staliunas, “Non-Hermitian Broad Aperture Semiconductor Lasers Based on PT-Symmetry,” in 21st International Conference on Transparent Optical Networks (ICTON 2019), 2019, pp. 1–4, doi: 10.1109/ ICTON.2019.8840291.
  12. Mossakowska-Wyszyńska, P. Niedźwiedziuk, P. Witoński, and P. Szczepański, “Analysis of Light Generation in Laser with PT- Symmetric Mirror,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), 2018, p. JTu5A.50, doi: 10.1364/BGPPM.2018.JTu5A.50.
  13. Zhu, Y. Zhao, J. Fan, and L. Zhu, “Modal Gain Analysis of Parity-Time-Symmetric Distributed Feedback Lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 5, pp. 5–11, Sep.  2016, doi: 10.1109/JSTQE.2016.2537209.
  14. Phang, A. Vukovic, H. Susanto, T.M. Benson, and P. Sewell, “Ultrafast optical switching using parity–time symmetric Bragg gratings,” J. Opt. Soc. Am. B, vol. 30, no. 11, pp. 2984‒2991, 2013, doi: 10.1364/JOSAB.30.002984.
  15. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, “Impact of dispersive and saturable gain/loss on bistability of nonlinear parity–time Bragg gratings,” Opt. Lett., vol. 39, no. 9, pp. 2603–2606, May 2014, doi: 10.1364/OL.39.002603.
  16. Liu, X.-T. Xie, C.-J. Shan, T.-K. Liu, R.-K. Lee, and Y. Wu, “Optical bistability in nonlinear periodical structures with PT-symmetric potential,” Laser Phys., vol. 25, no. 1, p. 015102, 2015, doi: 10.1088/1054-660X/25/1/015102.
  17. Mukherjee and P.C. Jana, “Controlled optical bistability in parity-time-symmetric coupled micro-cavities: Possibility of all-optical switching,” Physica E Low Dimens. Syst. Nanostruct., vol. 117, p. 113780, Mar. 2020, doi: 10.1016/j.physe.2019.113780.
  18. D.R. Paschotta, “Pockels Effect,” [Online]. Available: www.rp-photonics.com/pockels_effect.html. [Accessed: 11. Dec. 2020].
  19. Kamp, J. Hofmann, A. Forchel, and S. Lourdudoss, “Ultrashort InGaAsP/InP lasers with deeply etched Bragg mirrors,” Appl. Phys. Lett., vol. 78, no. 26, pp. 4074–4075, Jun. 2001, doi: 10.1063/1.1377623.
  20. Happach, et al., “Temperature-Tolerant Wavelength-Setting and -Stabilization in a Polymer-Based Tunable DBR Laser,” J. Light. Technol., vol. 35, no. 10, pp. 1797–1802, May 2017, doi: 10.1109/JLT.2017.2652223.
  21. Smit, K. Williams, and J. van der Tol, “Past, present, and future of InP-based photonic integration,” APL Photonics, vol. 4, no. 5, p. 050901, May 2019, doi: 10.1063/1.5087862.
  22. F.M. Soares, M. Baier, T. Gaertner, N. Grote, M. Moehrle, T. Beckerwerth, P. Runge, and M. Schell, “InP-Based Foundry PICs for Optical Interconnects,” Appl. Sci., vol. 9, no. 8, p.  1588, Apr. 2019, doi: 10.3390/app90815a88.
  23. NeoPhotonics Corporation, “Indium Phosphide PICs,” [Online]. Available: www.neophotonics.com/technology/indium-phosphide-pics/. [Accessed: 23. May 2019].
  24. Phang, Theory and numerical modelling of parity-time symmetric structures for photonics, PhD thesis, University of Nottingham, 15 Jul. 2016. [Online]. Available: eprints.nottingham.ac.uk/32596/ [Accessed: 30. Nov. 2018]
  25. Witoński, A. Mossakowska-Wyszyńska, and P. Szczepański, “Effect of Nonlinear Loss and Gain in Multilayer PT-Symmetric Bragg Grating,” IEEE J. Quantum Electron., vol. 53, no. 6, pp. 1–11, Dec. 2017, doi: 10.1109/JQE.2017.2761380.
  26. O.V. Shramkova and G.P. Tsironis, “Resonant Combinatorial Frequency Generation Induced by a PT-Symmetric Periodic Layered Stack,” IEEE J. Sel. Top. QE., vol. 22, no. 5, p. 5000307, Sep./Oct. 2016, doi: 10.1109/JSTQE.2015.2505139.
  27. Haug and L. Banyai, Red., Optical Switching in Low-Dimensional Systems. Plenum Press, New York, Springer US, 1989, pp. 35‒48.
  28. Garmire and A. Kost, Red., Nonlinear Optics in Semiconductors I: Nonlinear Optics in Semiconductor Physics I, 1st edition. Academic Press US, 1998, pp. 364‒371.

Date

12.10.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.139202
×