Details

Title

Structure and Properties of Joints of an Yttrium-Containing Magnesium Alloy (WE43) Obtained by Friction Stir Welding

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

vol. 25

Issue

No 4

Authors

Affiliation

Adamiec, J. : Silesian University of Technology, Poland. ; Łyczkowska, K. : Silesian University of Technology, Poland. ; Baluch, K. : Silesian University of Technology, Poland. ; Gładyś, K. : Silesian University of Technology, Poland. ; Mrowiec, A. : Silesian University of Technology, Poland. ; Kopeć, G. : Silesian University of Technology, Poland.

Keywords

Friction stir welding (FSW) ; Magnesium alloy ; WE43 ; Joining technology ; Heat treatment

Divisions of PAS

Nauki Techniczne

Coverage

133-143

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  • Czerwiński, F. (2008). Magnesium Injection Molding. New York: Springer.

  • Martynenko, N. S., Luk’Yanova, E. A., Morozov, M. M., Yusupov, V. S., Dobatkin, S. V. & Estrin, Y. Z. (2018). Study of the structure, mechanical properties and corrosion resistance of magnesium alloy WE43 after rotary swaging. Metal Science and Heat Treatment. 60(3), 253-258. DOI 10.1007/s11041-018-0269-3.

  • Mengucci, P., Barucca, G., Riontino, G., Lussana, D., Massazza, M., Ferragut, R. & Aly, E. H. (2008). Structure evolution of a WE43 Mg alloy submitted to different thermal treatment. Materials Science and Engineering: A. 479(1-2), 37-44. https://doi.org/10.1016/j.msea.2007.06.016.

  • Kang, H., Huang, Z.H., Wang, S.C., Yan, H., Chen, R.S. & Huang, J.C. (2020). Effect of pre-deformation on microstructure and mechanical properties of WE43 magnesium alloy II: Aging at 250 and 300 °C. Journal of Magnesium and Alloys. 8(1), 103-110. DOI.org/10.1016/j.jma.2019.11.012.

  • Nie, J.F. & Muddle B.C. (2000). Characterization of strengthening precipitate phases in a Mg-Y-Nd alloy. Acta Materialia. 48(8), 1691-1703. DOI 10.1016/S1359-6454(00)00013-6.

  • Beladi, H. & Bernett, M.R. (2007). Influence of aging pre-treatment on the compressive deformation of WE54 alloy. Materials Science and Engineering A. 452-453, 306-312. DOI /10.1016/j.msea.2006.10.125.

  • Friedrich, H. & Schumann, S. (2001). Research for a “new age of magnesium” in the automotive industry. Journal of Materials Processing Technology. 117(3), 276-281. DOI 10.1016/S0924-0136(01)00780-4

  • Friedrich, H.E., Mordike, B.L. (2006). Magnesium Technology: Metallurgy, Design, Data, Applications. Berlin - Heidelberg: Springer.

  • Matweb. (2023). Retrieved December 11, 2023, from http://www.matweb.com/search/DataSheet.aspx?MatGUID=4b8a8c13cf354fc5893a40cf8eca022c&ckck=1.

  • Mraied, H., Wangb, W. & Cai, W. (2019). Influence of chemical heterogeneity and microstructure on the corrosion resistance of biodegradable WE43 magnesium alloys. Journal of Materials Chemistry B. 7(41), 6399-6411. DOI.org/10.1039/C9TB00388F.

  • Elektron WE-43. (2005-2006). Magnesium Elektron: Service & Innovation in Magnesium, 467.

  • Pekguleryuz, M. O., & Kaya, A. A. (2003). Creep resistant magnesium alloys for powertrain applications. Advanced Engineering Materials. 5(12), 866–878.

  • Yang, Z., Li, J.P., Zhang, J.X., Lorimer, G.W. & Robson, J. (2008). Review on research and development of magnesium alloys. Acta Metallurgica Sinica (English Letters). 21(5), 313-328. DOI: 10.1016/S1006-7191(08)60054-X.

  • Yu, K., Li, W. & Wang, R. (2005). Mechanical properties and microstructure of as-cast and extruded Mg-(Ce, Nd)-Zn-Zr alloys. Journal Central South University Technology. 12(5), 499-502. DOI: 10.1007/s11771-005-0110-1.

  • Avedesian, M., Baker, H. (1999). Magnesium and Magnesium Alloys. ASM Speciality Handbook.

  • Kiełbus, A. (2007). The influence of solution treatment time on the microstructure of WE43 magnesium alloy. Acta Metallurgica Slovaca. 13, 653-657.

  • Antion C., Donnadieu P., Perrard F., Deschamps, A., Tassin, C. & Pisch, A. (2003). Hardening precipitation in Mg-4Y-3RE alloy. Acta Materialia. 51(18), 5335-5348. DOI: 10.1016/S1359-6454(03)00391-4.

  • Santos, T., Vilaça, P. & Quintino, L. (2008). Developments in ndt for detecting imperfections in friction stir welds in aluminium alloys. Welding in the World. 52(9), 30-37. https://doi.org/10.1007/BF03266666.

  • Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Temple-Smith P., Dawes, C.J. (1991). GB Patent Application nr 9125978.8. Friction Stir Butt Welding. Int. Patent Application no. PCT/GB92/02203.

  • Zadroga, L., Pietras, A., Papkala, H. (2003). Study and research on the conditions of joining dissimilar materials by modern friction welding methods. Report on the research work no Bb-96. Welding Institute. Gliwice.

  • Wang Q, Tong X., Wu G., Zhan J. Qi F., Zhang L., Liu W. (2023). Microstructure and strengthening mechanism of TIG welded joints of a Mg-Nd-Gd alloy: Effects of heat input and pulse current. Materials Science and Engineering: A. 869, 144816, 1-18. DOI.org/10.1016/j.msea.2023.144816.

  • Peter, I., Rosso, M. (2018). Investigations on Tungsten Inert Gas Welded Magnesium Alloy In 7th International Conference on Advanced Materials and Structures – AMS, 28–31 March 2018. Romania, DOI 10.1088/1757-899X/416/1/012030.

  • Adamiec J. (2010). Weldability od magnesium alloy, Monography. Gliwice, Poland: Silesian University of Technology.

  • Palanivel S., Nelaturu P., Glass B. & Mishra R.S. (2015). Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Materials & Design (1980-2015). 65, 934-952. DOI.org/10.1016/j.matdes.2014.09.082.

  • Li, J., Zhang, DT., Chai, F. & Zhang, W. (2020). Microstructures and mechanical properties of WE43 magnesium alloy prepared by friction stir processing. Rare Metals. 39, 1267-1272 https://doi.org/10.1007/s12598-014-0306-3.

  • Wu, B., Yusof, F., Li, F., Abdul Razak, B. B., Bin Muhamad, M. R., Badruddin, I. A., Hussien, M.,Kamangar, S. & Ibrahim, M. Z. (2024). Influence of friction stir processing parameters on microstructure, hardness and corrosion resistance of biocompatible Mg alloy WE43. Arabian Journal for Science and Engineering. 49, 1897-1911. DOI.org/10.1007/s13369-023-08037-8.

  • Klenam, D. E. P., Ogunwande, G. S., Omotosho, T., Ozah, B., Maledi, N. B., Hango, S. I., Fabuyide, A.A., Mohlala, L., van der Marwe, J.W. & Bodunrin, M.O. (2021). Welding of magnesium and its alloys: an overview of methods andprocess parameters and their effects on mechanical behaviour and structural integrity of the welds. Manufacturing Review. 8, 29, 1-32. DOI.org/10.1051/mfreview/2021028.

  • Chen, H., Zhu, Z., Zhu, Y., Sun, L., & Guo, Y. (2023). Solid-state welding of aluminum to magnesium alloys. A review. Metals. 13(8), 1410, 1-23. DOI.org/10.3390/ met13081410.

  • Adamiec J., Zadroga L. & Chabko T. (2008). Sucture and properties of the AZ91 magnesium alloy welds created with the use of Friction Stir Welding (FSW). Inżynieria Materiałowa. 29(4), 320-325.

  • Luty G. & Gałaczyński T. (2018). Joining technologies for aerospace structures, Part 2, Linear Friction Stir Welding (FSW). Projektowanie i Konstrukcje Inżynierskie. 11(134). (in Polish).

  • Threadgill, P.L., Leonard, A.J., Shercliff, H.R. & Withers, P.J. (2009). Friction stir welding of aluminum alloys. International Materials Reviews. 54(2), 49-93. https://doi.org/10.1179/174328009X411136.

  • Salih, O.S., Neate, N., Ou, H. & Sun, W. (2020). Influence of process parameters on the microstructural evolution and mechanical characterisations of friction stir welded Al-Mg-Si alloy. Journal of Materials Processing Technology. 275, 116366, 1-14. https://doi.org/10.1016/j.jmatprotec.2019.116366.

  • Radisavljevic, I., Zivkovic, Z., Radovic, N. & Grabulov, V. (2013). Influence of FSW parameters on formation quality and mechanical properties of Al 2024-T351 butt welded joints. Transactions of Nonferrous Metals Society of China. 23(12), 3525-3539. https://doi.org/10.1016/S1003-6326(13)62897-6.

  • Retrieved March 18, 2025, from http://www.twi.co.uk/technical-knowledge/published-papers/friction-stir-welding-of-magnesium-alloys-march-2003/

  • Yang, Q., Xiao, B.L. & Ma, Z.Y. (2012). Influence of process parameters on microstructure and mechanical properties of friction-stir-processed Mg-Gd-Y-Zr Casting. Metallurgical and Materials Transactions A. 43(6), 2094-2109. https://doi.org/10.1007/s11661-011-1076-2.

  • Feng, A.H. & Ma, Z.Y. (2009). Microstructural evolution of cast Mg–Al–Zn during friction stir processing and subsequent aging. Acta Materialia. 57(14), 4248-4260. https://doi.org/10.1016/j.actamat.2009.05.022.

  • Badkoobeh, F., Mostaan, H., Rafiei, M., Bakhsheshi-Rad, H.R. & Berto, F. (2021). Friction stirwelding/processing of Mg-based alloys: a critical review on advancements and challenges. Materials. 14(21), 6726, 1-35. https://doi.org/10.3390/ma14216726.

  • Singh, K., Singh, G. & Singh H. (2018). Review on friction stir welding of magnesium alloys. Journal of Magnesium and Alloys. 6(4), 399-416. https://doi.org/10.1016/j.jma.2018.06.001.

  • Khan, Y.S., Abidi, M.H., Malik, W., Lone, N.F., Aboudaif, M.K. & Mohammed, M.K. (2023). Effect of traverse speed variation on microstructural properties and corrosion behavior of friction stir welded WE43 Mg alloy joints. Materials. 16(14), 4902, 1-14. DOI.org/10.3390/ma16144902.

  • Węglowska, A., Matusiak, J., Miara, D., Pietrzak, J. (2022). Research on the Friction Stir Welding process of cast magnesium alloys intended for operation at elevated temperatures. Research report no. BW-52/22 (Bb136). Łukasiewicz Research Network – Upper Silesian Institute of Technology, Gliwice, Poland.

  • Thakur, N. & Harvinder, L. (2015). Experimental comparison of tig and friction stir welding processes for aluminium 6063-T6. International Journal on Emerging Technologies. 6(2), 189-194.

  • Singh, G., Kang, A.S., Singh, K. & Singh, J. (2017). Experimental comparison of friction stir welding process and TIG welding process for 6082-T6 aluminium alloy. Materials Today Proceedings. 4(2), 3590-3600. https://doi.org/10.1016/j.matpr.2017.02.251.

Date

30.12.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.155390
×