Details

Title

Microstructure Modelling During Heating and Deformation of S355 Steel Samples in the Temperature Range of Phase Transformation Using a Coupled FE/CA/MC Model

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

vol. 25

Issue

No 4

Authors

Affiliation

Dębiński, T. : AGH University of Krakow, Poland. ; Hojny, M. : AGH University of Krakow, Poland.

Keywords

Image analysis ; Heating simulation ; Grain growth ; Macrostructure ; Morphometric parameters ; Numerical simulation

Divisions of PAS

Nauki Techniczne

Coverage

211-219

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  • Szeliga, D., Bzowski, K., Rauch, Ł., Kuziak, R. & Pietrzyk, M. (2020). Mean field and full field modelling of microstructure evolution and phase transformations during hot forming and cooling of low carbon steels. Computer Methods in Materials Science. 20(3), 121-132. https://doi.org/10.7494/cmms.2020.3.0727.

  • Avrami, M. (1939). Kinetics of phase change. I: General theory. The Journal of Chemical Physics. 7(12), 1103-1112. DOI: 10.1063/1.1750380.

  • Pietrzyk, M., Szeliga, D. & Kuziak, R. (2014). Physical and numerical simulation of the continuous annealing of DP steel strips. Steel Research International. 85(1), 99-111, DOI:10.1002/srin.201200318.

  • Szeliga, D., Foryś, J., Kusiak, J., Kuziak, R., Nadolski, R., Oprocha, P., Pietrzyk, M., Potorski, P., Rauch, Ł. & Zalecki, W. (2025). Stochastic model of accelerated cooling of eutectoid steel rails. Modelling and Simulation in Materials Science and Engineering, 33(2), 025008, 1-19. DOI: 10.1088/1361-651X/ada81c.

  • Ludwig, A., Wu, M. & Kharicha, A. (2016). Simulation in metallurgical processing: recent developments and future perspectives. JOM. 68(8), 2191-2197. https://doi.org/10.1007/s11837-016-1992-0.

  • Arun Babu, K., Prithiv, T.S., Gupta, A. & Mandal, S. (2021). Modeling and simulation of dynamic recrystallization in super austenitic stainless steel employing combined cellular automaton, artificial neural network and finite element method. Computational Materials Science. 195, 110482, 1-17. DOI: https://doi.org/10.1016/j.commatsci.2021.110482.

  • Majta, J., Madej, Ł., Svyetlichnyy, D. S., Perzyński, K., Kwiecień, M. & Muszka, K. (2016). Modeling of the inhomogeneity of grain refinement during combined metal forming process by finite element and cellular automata methods. Materials Science and Engineering. 671, 204-213. https://doi.org/10.1016/j.msea.2016.06.052.

  • Ren, X., Huo, Y., Hosseini, S. R. E., He, T., Yan, Z., Fernandes, F. A., Pereira, A.B., Ji, H., Bai, J., Bian, Z. & Du, X. (2023). A multi-scale modelling by coupling cellular automata with finite element method and its application on cross-wedge rolling. Materials today Communications. 37, 106976, 1-11. https://doi.org/10.1016/j.mtcomm.2023.106976.

  • Fang, D. O. N. G., Zhang, T. & Lei, L. I. U. (2023). Multi-scale simulation of flow behavior and microstructure evolution for AA2219 alloy during multi-pass ring rolling process. Transactions of Nonferrous Metals Society of China. 33(10), 2926-2942. https://doi.org/10.1016/S1003-6326(23)66308-3.

  • Mede, T., Kocjan, A., Paulin, I. & Godec, M. (2020). Numerical mesoscale modelling of microstructure evolution during selective laser melting. Metals. 10(6), 800, 1-15. https://doi.org/10.3390/met10060800.

  • Madej, L., Sieradzki, L., Sitko, M., Perzynski, K., Radwanski, K. & Kuziak, R. (2013). Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic–pearlitic microstructure. Computational Materials Science. 77, 172-181. https://doi.org/10.1016/j.commatsci.2013.04.020.

  • Duan, X., Wang, M., Che, X., He, L. & Liu, J. (2023). Cellular automata coupled finite element simulation for dynamic recrystallization of extruded AZ80A magnesium alloy. Journal of Materials Science. 58, 1345-1367. https://doi.org/10.1007/s10853-022-08069-9.

  • Chen, F., Zhu, H., Chen, W., Ou, H. & Cui, Z. (2021). Multiscale modeling of discontinuous dynamic recrystallization during hot working by coupling multilevel cellular automaton and finite element method. International Journal of Plasticity. 145, 103064, 1-24. https://doi.org/10.1016/j.ijplas.2021.103064.

  • Zhi, Y., Jiang, Y., Ke, D., Hu, X. & Liu, X. (2024). Review on cellular automata for microstructure simulation of metallic materials. Materials. 17(6), 1370, 1-38. https://doi.org/10.3390/ma17061370.

  • Zhang, Y. & Zhang, J. (2019). Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata. Additive Manufacturing. 28, 750-765. https://doi.org/10.1016/j.addma.2019.06.024.

  • Wu, C., Jia, B. & Han, S. (2019). Coupling a cellular automaton model with a finite element model for simulating deformation and recrystallization of a low-carbon micro-alloyed steel during hot compression. Journal of Materials Engineering and Performance. 28, 938-955. https://doi.org/10.1007/s11665-018-3834-4.

  • Bakhtiari, M. & Salehi, M.S. (2018). Reconstruction of deformed microstructure using cellular automata method. Computational Materials Science. 149, 1-13. https://doi.org/10.1016/j.commatsci.2018.02.053.

  • Łach, Ł. (2021). Modeling of microstructure evolution during deformation processes by cellular automata—boundary conditions and space reorganization aspects. Materials. 14(6), 1377, 1-22. https://doi.org/10.3390/ma14061377.

  • Sitko, M. & Madej, Ł. (2016). Modelling of the cellular automata space deformation within the RCAFE framework. AIP Conference Proceedings. 1769, 160004. https://doi.org/10.1063/1.4963547.

  • Svyetlichnyy, D.S. (2012). Reorganization of cellular space during the modeling of the microstructure evolution by frontal cellular automata. Computational Materials Science. 60, 153-162. https://doi.org/10.1016/j.commatsci.2012.03.029.

  • Hojny, M. (2018). Modeling steel deformation in the semi-solid state. Switzerland: Springer.

  • Liang Yu, L., Wu, L. S., Li, L. S. & Dong, Y. C. (2008). A cellular automata model for dendrite structure simulation. Materials Science Forum. 575-578, 109-114. https://doi.org/10.4028/www.scientific.net/MSF.575-578.109.

  • Hojny, M. & Dębiński, T. (2022). A novel FE/MC-based mathematical model of mushy steel deformation with GPU support. Archives of Metallurgy and Materials. 67(2), 735-742. DOI: https://doi.org/10.24425/amm.2022.137812

  • Hojny, M., Głowacki, M., Bała, P., Bednarczyk, W. & Zalecki, W. (2019). A multiscale model of heating-remelting-cooling in the Gleeble 3800 thermo-mechanical simulator system. Archives of Metallurgy and Materials. 64(1), 401-412. DOI: 10.24425/amm.2019.126266.

Date

30.12.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.157619
×