Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 52
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents kinematic characteristics of the double 4-link coupler system, used in actual powertrain of low-floor trams (NGT6-Kr). The spatial kinematic model of the couplings was formulated assuming ideal joints and rigid members. The constraints equations of the mechanism were solved iteratively and differentiated to obtain the Jacobian matrix. The mobility and singularity analysis of the coupler mechanism was performed on the basis of the Jacobian matrix.

Kinematic characteristics of the single and double coupler system were analyzed for gross angular and linear axle displacements (misalignments), taking the advantage of the fully nonlinear model. The coupling system was evaluated based on criteria describing homokinetics, balancing and clearance demands, and angular displacements in the joints. These criteria were determined for different design parameters like: coupler proportions, platform shift and angle, middle shaft length.

Go to article

Authors and Affiliations

Michał Maniowski
Tomasz Czauderna
Download PDF Download RIS Download Bibtex

Abstract

I n this second interview in our series with scientist-couples who are partners both at work and in life, we talk to Joanna Sułkowska and Piotr Sułkowski about science as discussed on morning talk shows as well as the need for understanding and keeping distance.

Go to article

Authors and Affiliations

Joanna Sułkowska
Piotr Sułkowski
Download PDF Download RIS Download Bibtex

Abstract

The permanent magnet synchronous motor (PMSM) driven by an inverter is widely used in the industrial field, but the inverter has a significant impact on the operational stability of the PMSM. The torque ripple of the PMSM is directly affected by the coupling of multiple harmonic voltages in the motor windings. In order to analyze its influence, a water-cooled PMSM with 20 kW 2000 r/min is taken as an example to establish the finite element model of the prototype, and the correctness of the model is verified by experiments. Firstly, based on the finite element method, the electromagnetic field of the PMSM is numerically solved in different operating states, and the performance parameters of the PMSM are obtained. Based on these parameters, the influence of the harmonic voltage amplitude on the torque ripple is studied, and the influence law is obtained. Secondly, combined with the decoupling analysis method, the influence of harmonic voltage coupling on the torque ripple is compared and analyzed, and the variation law of harmonic voltage coupling on the torque ripple is obtained. In addition, the influence of different harmonic voltage coupling on the average torque of the PMSM is studied, and the influence degree of different harmonic voltage amplitude on the torque fluctuation is determined. The conclusion of this paper provides reliable theoretical guidance for improving motor performance.

Go to article

Authors and Affiliations

Shengtao Geng
Yong Zhang
Hongbo Qiu
Cunxiang Yang
Ran Yi
Download PDF Download RIS Download Bibtex

Abstract

The polarized electromagnetic waves have significant impact on the performance of adaptive antenna arrays. In this paper we investigate the effect of polarized desired and undesired signals on the performance of electronically steered beam adaptive antenna arrays. To achieve this goal, we built an analytical signal model for the adaptive array, in order to analyze, and compare the effect of polarized signals on the output SINRs (signal to interference plus noise ratios) of single-dipole, and cross-dipole adaptive antenna arrays. Based on a proof-of-concept experiment, and on MATLAB simulation results, it will be shown that cross-dipole adaptive antenna arrays exhibit better performance in comparison with single-dipole adaptive antenna arrays in presence of randomly polarized signals. However, single-dipole arrays show better performance under certain operating conditions.

Go to article

Authors and Affiliations

Amin H. Al Ka'bi
Download PDF Download RIS Download Bibtex

Abstract

In this publication the effect of the operating temperature on the effective inductance of a controllable inductor is analysed. The main difference compared to a coil with a simple single core lies in the current-controlled inductance-value. This is achieved by a second core implemented perpendicular upon the load-toroid affecting the saturation within a limited shared volume. Corresponding to the presented analysis, the dependencies on the core temperatures are investigated by measurements.
Go to article

Authors and Affiliations

Guido Schierle
1
ORCID: ORCID
Michael Meissner
1
Klaus F. Hoffmann
1

  1. Helmut Schmidt University, Germany
Download PDF Download RIS Download Bibtex

Abstract

In the paper, a new model of friction coupling in rolling friction is presented. Apart from slips related to elastic and plastic deformation in the area of actual contact of two bodies, the mechanism includes also inertia forces related to tangential deformations. Research concerning a model of coupling mechanism of variable ratio friction wheels is described. The main objective or the investigation was to prove that the force acting along the contact line of friction wheels is significantly affected by the shape of the contact area which had not been taken into account in the relations applied so far. A new model of the coupling mechanism was suggested and verified experimentally.
Go to article

Authors and Affiliations

Czesław Koziarski
Download PDF Download RIS Download Bibtex

Abstract

In multi-axis motion control systems, the tracking errors of single axis load and the contour errors caused by the mismatch of dynamic characteristics between the moving axes will affect the accuracy of the motion control system. To solve this issue, a biaxial motion control strategy based on double-iterative learning and cross-coupling control is proposed. The proposed control method improves the accuracy of the motion control system by improving individual axis tracking performance and contour tracking performance. On this basis, a rapid control prototype (RCP) is designed, and the experiment is verified by the hardware and software platforms, LabVIEW and Compact RIO. The whole design shows enhancement in the precision of the motion control of the multiaxis system. The performance in individual axis tracking and contour tracking is greatly improved.

Go to article

Authors and Affiliations

Wan Xu
Jie Hou
Wei Yang
Cong Wang
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a spring system symmetrically arranged around a circular plate compliant to out-of-plane oscillation is proposed. The spring system consists of single serpentine springs mutually coupled in a plane. Three theoretical mechanical models for evaluating the stiffness of the spring system are built, which are based on the flexural beam, Sigitta, and serpentine spring theories and equivalent mechanical spring structure models. The theoretically calculated results are in good agreement with numerical solutions using the finite element method, with errors less than 10% in the appropriate dimension ranges of the spring. Compared to similar spring structures without mechanical coupling, the proposed mechanically coupled spring shows advantage in suppressing the mode coupling.
Go to article

Bibliography

[1] X. Liu, K. Kim, and Y. Sun. A MEMS stage for 3-axis nanopositioning. Journal of Micromechanics and Microengineering, 17(9):1796–1802, 2007. doi: 10.1088/0960-1317/17/9/007.
[2] R. Legtenberg, A.W. Groeneveld, and M. Elwenspoek. Comb-drive actuators for large displacements. Journal of Micromechanics and Microengineering, 6(3):320–329, 1996. doi: 10.1088/0960-1317/6/3/004.
[3] S. Abe, M.H. Chu, T. Sasaki, and K. Hane. Time response of a microelectromechanical silicon photonic waveguide coupler switch. IEEE Photonics Technology Letters, 26(15):1553–1556, 2014. doi: 10.1109/lpt.2014.2329033.
[4] T.Q. Trinh, L.Q. Nguyen, D.V. Dao, H.M. Chu, and H.N. Vu, Design and analysis of a z-axis tuning fork gyroscope with guided-mechanical coupling. Microsystem Technologies, 20(2):281–289, 2014. doi: 10.1007/s00542-013-1947-0.
[5] Y.J. Huang, T.L. Chang, and H.P. Chou. Novel concept design for complementary metal oxide semiconductor capacitive z-direction accelerometer. Japanese Journal of Applied Physics, 48(7):076508, 2009. doi: 10.1143/jjap.48.076508.
[6] A. Sharaf and S. Sedky. Design and simulation of a high-performance Z-axis SOI-MEMS accelerometer. Microsystem Technologies, 19(8):1153–1163, 2013. doi: 10.1007/s00542-012-1714-7.
[7] Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida. Three-axis SOI capacitive accelerometer with PLL C–V converter. Sensors and Actuators A: Physical, 75(1):77–85, 1999. doi: 10.1016/s0924-4247(98)00295-7.
[8] D. Peroulis, S.P. Pacheco, K. Sarabandi, and L.P.B. Katehi. Electromechanical considerations in developing low-voltage RF MEMS switches. IEEE Transactions on Microwave Theory and Techniques, 51:259–270, 2003. doi: 10.1109/TMTT.2002.806514.
[9] Y. Liu. Stiffness Calculation of the microstructure with crab-leg flexural suspension. Advanced Materials Research, 317-319:1123–1126, 2011. doi: 10.4028/www.scientific.net/AMR.317-319.1123.
[10] H.M. Chou, M.J. Lin, and R. Chen. Investigation of mechanics properties of an awl-shaped serpentine microspring for in-plane displacement with low spring constant-to-layout area. Journal of Micro/Nanolithography MEMS and MOEMS, 15(3):035003, 2016. doi: 10.1117/1.JMM.15.3.035003.
[11] D.V. Hieu, L.V. Tam, N.V. Duong, N.D. Vy, and C.M. Hoang. Design and simulation analysis of a z axis microactuator with low mode cross-talk. Journal of Mechanics, 36(6):881–888, 2020. doi: 10.1017/jmech.2020.48.
[12] D.V. Hieu, L.V. Tam, K. Hane, and M.H. Chu. Design and simulation analysis of an integrated XYZ micro-stage for controlling displacement of scanning probe. Journal of Theoretical and Applied Mechanics, 59(1):143–156, 2021. doi: 10.15632/jtam-pl/130549.
[13] F. Hu, W. Wang, and J. Yao. An electrostatic MEMS spring actuator with large stroke and out-of-plane actuation. Micromechanics and Microengineering, 21(11):115029, 2011. doi: 10.1088/0960-1317/21/11/115029.
[14] W. Wai-Chi, A.A. Azid, and B.Y. Majlis. Formulation of stiffness constant and effective mass for a folded beam. Archives of Mechanics, 62(5):405–418, 2010.
[15] Y. Cao and Z. Xi. A review of MEMS inertial switches. Microsystem Technologies, 25(12):4405–4425, 2019. doi: 10.1007/s00542-019-04393-4.
[16] K.R. Sudha, K. Uttara, P.C. Roshan, and G.K. Vikas. Design and analysis of serpentine based MEMS accelerometer. AIP Conference Proceedings, 1966:020026, 2018. doi: 10.1063/1.5038705.
[17] H.M. Chou, M.J. Lin, and R. Chen. Fabrication and analysis of awlshaped serpentine microsprings for large out-of-plane displacement. Journal of Micromechanics and Microengineering, 25:095018, 2015. doi: 10.1088/0960-1317/25/9/095018.
[18] C.M. Hoang, and K. Hane. Design fabrication and vacuum operation characteristics of two-dimensional comb-drive micro-scanner. Sensors and Actuators A: Physical, 165(2): 422–430, 2011. doi: 10.1016/j.sna.2010.11.004.
[19] G. Barillaro, A. Molfese, A. Nannini, and F. Pieri. Analysis simulation and relative performances of two kinds of serpentine springs. Journal of Micromechanics and Microengineering, 15(4):736–746, 2005. doi: 10.1088/0960-1317/15/4/010.
[20] P.B. Chu, I. Brener, C. Pu, S.S. Lee, J.I. Dadap, S. Park, K.Bergman et al. Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch. Journal of Microelectromechanical Systems, 14(2):261–273, 2005. doi: 10.1109/JMEMS.2004.839827.
[21] G.D.J. Su, S.H. Hung, D. Jia, and F. Jiang. Serpentine Spring corner designs for micro-electro-mechanical systems optical switches with large mirror mass. Optical Review, 12(4):339–344, 2005. doi: 10.1007/s10043-005-0339-9.
[22] A. Khlifi, A. Ahmed, S. Pandit, B. Mezghani, R. Patkar, P. Dixit, and M.S. Baghini. Experimental and theoretical dynamic investigation of MEMS Polymer mass-spring systems. IEEE Sensors Journal, 20(19):11191–11203, 2020. doi: 10.1109/JSEN.2020.2996802.
[23] J. Wu, T. Liu, K. Wang, and K. Sørby. A measuring method for micro force based on MEMS planar torsional spring. Measurement Science and Technology, 32(3):035002, 2020. doi: 10.1088/1361-6501/ab9acd.
[24] Z. Rahimi, J. Yazdani, H. Hatami, W. Sumelka, D. Baleanu, and S. Najafi. Determination of hazardous metal ions in the water with resonant MEMS biosensor frequency shift – concept and preliminary theoretical analysis. Bulletin of the Polish Academy of Sciences: Technical Sciences, 68(3): 529–537, 2020. doi: 10.24425/bpasts.2020.133381.
[25] K.G. Sravani, D. Prathyusha, C. Gopichand, S.M. Maturi, A. Elsinawi, K. Guha, and K. S. Rao. Design, simulation and analysis of RF MEMS capacitive shunt switches with high isolation and low pull-in-voltage. Microsystem Technologies, 28:913–928, 2022. doi: 10.1007/s00542-020-05021-2.
[26] N. Lobontiu and E. Garcia. Mechanics of Microelectromechanical Systems. Kluwer Academic Publishers, 2005. doi: 10.1007/b100026.
[27] H.A. Rouabah, C.O. Gollasch, and M. Kraft. Design optimisation of an electrostatic MEMS actuator with low spring constant for an “Atom Chip”. In Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, volume 3, pages 489–492, 2002.
[28] R. Raymond and J. Raymond. Roark's Formulas for Stress and Strain. McGraw-Hill, 1989.
[29] M.S. Weinberg and A. Kourepenis. Error sources in in-plane silicon tuning-fork MEMS gyroscopes. Journal of Microelectromechanical Systems, 15(3):479–491, 2006. doi: 10.1109/jmems.2006.876779.
Go to article

Authors and Affiliations

Duong Van Nguyen
1 2
ORCID: ORCID
Chien Quoc Nguyen
1
ORCID: ORCID
Hieu Van Dang
2
ORCID: ORCID
Hoang Manh Chu
1
ORCID: ORCID

  1. International Training Institute for Materials Science, Hanoi University of Science and Technology, Vietnam
  2. FPT University, Hanoi, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

This study aims to identify the potential predictors (i.e., financial well-being, mindfulness, and marital duration) of relationship satisfaction among married couples in Malaysia. Respondents were 156 Malaysian married couples from different races – Malay, Chinese, Indian, and others. All respondents responded to three questionnaires which are In Charge Financial Distress/ Financial Well-Being Scale (Prawitz et al., 2006), Mindfulness Attention Awareness Scale (Brown & Ryan, 2003), and Couple Satisfaction Index (Funk & Rogge, 2007). A significant positive relationship was found between financial well-being and mindfulness with relationship satisfaction, meanwhile, no statistically significant relationship was found between marital duration and relationship satisfaction. Moreover, mindfulness is established to be the strongest predictor of relationship satisfaction among married couples in Malaysia. This result emphasized the role of mindfulness within the context of development and sustainability of marital relationships satisfaction in addition to general well-being.
Go to article

Bibliography


Abd Rahman, N. F. & Keat, O. (2017). Anger Rumination, Revengeful Thought and Anger Displacement among Young People, Journal of Management & Science, 15(2), 108 – 114.
Adair, K. C., Boulton, A. J., & Algoe, S. B. (2018). The effect of mindfulness on relationship satisfaction via perceived responsive-ness: Findings from a dyadic study of heterosexual romantic partners. Mindfulness, 9(2), 597-609. doi: https://doi.org/10.1007/s12671-017-0801-3
Adonu, J. K. (2005). Psychosocial predictors of marital satisfaction in British and Ghanaian cultural settings (Doctoral dissertation, School of Social Sciences Theses).
Affandee, S., Rehman, S., & Keat, O. B. (2018). The relationship between personality traits and the perceptions on pre-marital sexual relations. Indian Journal of Public Health Research & Development, 9(11), 1938–1943.
Archuleta, K. L., Britt, S. L., Tonn, T. J., & Grable, J. E. (2011). Financial satisfaction and financial stressors in marital satisfaction. Psychological Reports, 108(2), 563–576. https://doi.org/10.2466/07.21.PR0.108.2.563-576
Aronson, P. (2008). The markers and meanings of growing up: Contemporary young women's transition from adolescence to adulthood. Gender and Society, 56 – 82.
Atkinson, B. J. (2013). Mindfulness training and the cultivation of secure, satisfying couple relationships. Couple and Family Psychology: Research and Practice, 2, 73–94. https://doi.org/10.1037/cfp0000002
Aziz, D. A., & Ali, S. I. N. L. M. (2020). Parenting Styles, Peer Relationship and Mental Health. Journal of Critical Reviews, 7(7), 1539-1545.
Bandura, A. (1990). Mechanisms of moral disengagement, in: W. REICH (Ed.), Origins of Terrorism: psychologies, ideologies, theologies, states of mind, pp. 161–191 (Cambridge, Cambridge University Press).
Barnes, S., Brown, K. W., Krusemark, E., Campbell, W. K., & Rogge, R. D. (2007). The role of mindfulness in romantic relationship satisfaction and responses to relationship stress. Journal of Marital and Family Therapy, 33(4), 482–500. https://doi.org/10.1111/j.1752-0606.2007.00033.x
Black, D. S. (2011). A brief definition of mindfulness. Mindfulness Research Guide, 1–2.
Bradbury, T. N., Fincham, F. D., & Beach, S. R. (2000). Research on the nature and determinants of marital satisfaction: A decade in review. Journal of Marriage and Family, 62(4), 964-980.
Brown, K.W. & Ryan, R.M. (2003). The benefits of being present: Mindfulness and its role in psychological well-being. Journal of Personality and Social Psychology, 84, 822-848.
Brown, K. W., Ryan, R. M., & Creswell, J. D. (2007). Mindfulness: Theoretical foundations and evidence for its salutary effects. Psychological inquiry, 18(4), 211-237.
Brüggen, E. C., Hogreve, J., Holmlund, M., Kabadayi, S., & Löfgren, M. (2017). Financial well-being: A conceptualization and research agenda. Journal of Business Research, 79, 228–237. https://doi.org/ 10.1016/j.jbusres.2017.03.013
Carlson, L. E., & Brown, K. W. (2005). Validation of the Mindful Attention Awareness Scale in a cancer population. Journal of Psychosomatic Research, 58, 29–33.
Dew, J. (2009) Bank on it: Thrifty couples are the happiest. In W. B. Wilcox (Ed.), The state of our unions (pp. 23-29). University of Virginia: National Marriage Project.
Duncan, G. D. (2008). The relationship between trait forgiveness and marital adjustment in heterosexual individuals (Doctoral disserta-tion, Capella University).
Funk, J. L. & Rogge, R. D. (2007). Testing the ruler with item response theory: Increasing precision of measurement for relationship satisfaction with the Couples Satisfaction Index. Journal of Family Psychology, 21, 572-583.
Gallimore, S., Hughes, J., & Geldhauser, H. (2006). Marriage length, spousal support, and marital satisfaction in dual-income men and women. Modern Psychological Studies, 12(1), 8.
Gerlach, T. M., Driebe, J. C., & Reinhard, S. K. (2020). Personality and romantic relationship satisfaction. Encyclopedia of personality and individual differences, 3688-3695.
Gómez-López, M., Viejo, C., & Ortega-Ruiz, R. (2019). Well-being and romantic relationships: A systematic review in adolescence and emerging adulthood. International Journal of Environmental Re-search and Public Health, 16(13), 2415.
Grable, J. E., Britt, S., & Cantrell, J. (2007). An exploratory study of the role financial satisfaction has on the thought of subsequent divorce. Family and Consumer Sciences Research Journal, 36, 130-150.
Kabat-Zinn, J. (1993). Mindfulness meditation: Health benefits of an ancient Buddhist practice. In D. Goleman & J. Gurin (Eds.), Mind/ Body Medicine (pp. 257–276). Yonkers, New York: Consumer Reports Books.
Kappen, G., Karremans, J. C., Burk, W. J., & Buyukcan-Tetik, A. (2018). On the Association Between Mindfulness and Romantic Relationship Satisfaction: the Role of Partner Acceptance. Mindfulness, 9(5), 1543–1556. https://doi.org/10.1007/s12671-018-0902-7
Keizer, R. (2014). Relationship Satisfaction. Encyclopedia of Quality of Life and Well-Being Research, 5437–5443. doi: https://doi.org/10.1007/978-94-007-0753-5_2455
Khaddouma, A., & Gordon, K. C. (2018). Mindfulness and young adult dating relationship stability: A longitudinal path analysis. Mind-fulness, 9, 1529–1542. https://doi.org/10.1007/s12671-018-0901-8
Kozlowski, A. (2013). Mindful mating: Exploring the connection between mindfulness and relationship satisfaction. Sexual and Relationship Therapy, 28(1-2), 92-104.
Lee, W. S., & McKinnish, T. (2018). The marital satisfaction of differently aged couples. Journal of Population Economics, 31(2), 337–362. https://doi.org/10.1007/s00148-017-0658-8
McGill, J., Adler-Baeder, F., & Rodriguez, P. (2016). Mindfully in love: A meta-analysis of the association between mindfulness and relationship satisfaction. Journal of Human Sciences and Extension, 4(1), 89 -101.
Muhammad, D. (2014). American money: love, finance, and preparing for marriage. The Crisis, pg 52.
Naderi, L., & Nory, A. (2017). The prediction of marital satisfaction of couples in isfahan based on empathy and forgiveness. Knowledge & Research in Applied Psychology, 16(4), 69-75.
Orathinkal, J., & Vansteenwegen, A. (2006). The effect of forgiveness on marital satisfaction in relation to marital stability. Contemporary Family Therapy, 28(2), 251-260.
Overall, N. C., Fletcher, G. J., & Simpson, J. A. (2010). Helping each other grow: Romantic partner support, self-improvement, and relationship quality. Personality and Social Psychology Bulletin, 36 (11), 1496-1513.
Prawitz, A. D., Garman, E. T., Sorhaindo, B., O’Neill, B., Kim, J., & Drentea, P. (2006). The InCharge financial distress/financial well- being scale: Development, administration, and score interpretation. Financial Counseling and Planning, 17(1), 34-50.
Sedaghatnia, S., Lamit, H., Ghahramanpouri, A., & Mohamad, S. (2013). An evaluation of residents' quality of life through neighborhood satisfaction in Malaysia. Environmental Management and Sustain-able Development, 2(1), 114-125.
Smith, A. R. (2015). Mindfulness and marital satisfaction: Direct and indirect effects (Doctoral dissertation, Colorado State University).
Sorokowski, P., Randall, A. K., Groyecka, A., Frackowiak, T., Cantarero, K., Hilpert, P., ... & Sorokowska, A. (2017). Marital satisfaction, sex, age, marriage duration, religion, number of children, economic status, education, and collectivistic values: Data from 33 countries. Frontiers in Psychology, 8, 1199.
Tavakol, Z., Nikbakht Nasrabadi, A., Behboodi Moghadam, Z., Sale-hiniya, H., & Rezaei, E. (2017). A review of the factors associated with marital satisfaction. Galen Medical Journal, 6(3).
Teimourpour, N., Moshtagh Bidokhti, N., & Pourshanbaz, A. The Relationship Between Attachment Styles, Marital Satisfaction and Sex Guilt with Sexual Desire in Iranian Women. Practice in Clinical Psychology, 1(1), 17-24.
Thoresen, R. J., & Goldsmith, E. B. (1987). The relationship between army families‟ financial well – being and depression, general well – being, and marital satisfaction. The Journal of Social Psychology, 127(5), 545 – 547.
Yusoff, A. M., Khan, A., Latif, A. A., & Aziz, D. A. (2019). Coping Strategies as a Mediator Between Stress and Marital Quality among Postrgraduate Students. Indian Journal of Public Health Research & Development, 10(4), 1382-1387.
Zainah, A. Z., Nasir, R., Hashim, R. S., & Yusof, N. M. (2012). Effects of demographic variables on marital satisfaction. Asian Social Science, 8(9), 46-49.
Ziaee, T., Jannati, Y., Mobasheri, E., Taghavi, T., Abdollahi, H., Modanloo, M., & Behnampour, N. (2014). The relationship between marital and sexual satisfaction among married women employees at Golestan University of Medical Sciences, Iran. Iranian Journal of Psychiatry and Behavioral Sciences, 8(2), 44-51.
Go to article

Authors and Affiliations

Athirah Yasmin Mohd Shakir
1
ORCID: ORCID
Dzilal Abdul Aziz
1
Suwathi Carmergam
1

  1. Management & Science University, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

This paper addresses the problem of seeking generalized Nash equilibrium for constrained aggregative games with double-integrator agents who communicate with each other on an unbalanced directed graph. An auxiliary variable is introduced to balance the consensus terms in the designed algorithm by estimating the left eigenvector of the Laplacian matrix associated with the zero eigenvalue in a distributed manner. Moreover, an event-triggered broadcasting scheme is proposed to reduce communication loads in the network. It is shown that the proposed communication scheme is free of the Zeno behavior and the asymptotic convergence of the designed algorithm is obtained. Simulation results are demonstrated to validate the proposed methods.
Go to article

Authors and Affiliations

Xin Cai
1
Xinyuan Nan
1
Bingpeng Gao
1

  1. School of Electrical Engineering, Xinjiang University, Urumqi 830047, China
Download PDF Download RIS Download Bibtex

Abstract

In the calculation of the acoustic performance of mufflers, the walls of mufflers are usually treated rigidly without considering the acoustic-structural coupling, but the results so calculated differ significantly from the actual situation. Based on the basic equations, the article derives the finite element equations of the muffler system while considering the acoustic-structural coupling effect and theoretically analyses the connection between the acoustic-structural coupling system and the structural and acoustic modes. The structural and acoustic modes of the muffler are calculated and the reasons for the mutation of the transmission loss curve of the muffler when the acoustic-structural coupling is considered are analysed. The results show that the acoustic-structural coupling is the result of the interaction between the structure and the air inside the expansion chamber under acoustic excitation, which manifests mutations in the sound pressure inside the muffler in some frequency bands. Then, using a single-chamber muffler as an example, the transmission loss is used to characterise the performance of the muffler. The effects of different factors such as shell thickness, structure, porous media material lining, and restraint method on the acoustic-structural coupling effect of the muffler are analysed, and the structure of a double-chamber muffler is successfully optimised according to the conclusions.
Go to article

Authors and Affiliations

Bo Zhao
1
He Li
1

  1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
Download PDF Download RIS Download Bibtex

Abstract

An algorithm of determination of mechanical stresses and deformations of the magnetic circuit shape, caused by forces of magnetic origin, is presented in this paper. The mechanical stresses cause changes of magnetizing characteristics of the magnetic circuit. The mutual coupling of magnetic and mechanical fields was taken into account in the algorithm worked out. A computational experiment showed that it was possible to include the interaction of both fields into one numerical model. The elaborated algorithm, taking into account the impact of mechanical stresses on magnetic parameters of construction materials, can be used in both the 2D and the 3D type field-model.

Go to article

Authors and Affiliations

Paweł Idziak
Krzysztof Kowalski
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the modelling of magnetic coupling in ignition coils by fractional differential equations. The use of fractional-order coupling allows us to consider the losses caused by the non-linearity of the ferromagnetic core of the ignition coil and obtain the waveform of the ignition coil’s secondary voltage closest to the values obtained experimentally.

Go to article

Authors and Affiliations

Sebastian Różowicz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents how to design and simulate two different topologies of a bandpass (BP) rectangular waveguide filter using a direct coupled resonator technique operating at 12 GHz. The filters are characterized by a cross coupling (CM) which produces a single attenuation pole at finite frequency used to realize the bandpass response. The filter resonators provide3rd and 4th order designs with a pseudoelliptic response using High Frequency Structure Simulator (HFSS) simulator. Transmission zeros are obtained through coupling between the fundamental mode and high mode. The filter structures are validated leading to obtain transmission zeros close to the bandpass. The simulated waveguide filters with a central frequency exhibit an insertion loss of 0.4/0.3dB and a return loss of 20/23dB for the whole bandwidth ranging from 11.85GHz to 12.15GHz that show good electromagnetic responses for the simulated rectangular waveguide filters.
Go to article

Authors and Affiliations

Gouni Slimane
1
Damou Mehdi
Chetioui Mohammed
2
Boudkhil Abdelhakim
2

  1. Laboratory of Electronics, Signal Processing and Microwave and Laboratory Technology of Communication, Faculty of Technology University Tahar Moulay of Saida, Algeria
  2. Laboratory of Telecommunications, Abu Bakr Belkaid University of Tlemcen, Algeria
Download PDF Download RIS Download Bibtex

Abstract

This work suggests a brand-new 1*4 two-dimensional demultiplexer design based on multicore photonic crystal fiber. Numerical models show that the optical signals can be separated in a photonic crystal fiber construction using optical signals with wavelengths of 0.85, 1.1, 1.19, and 1.35 μm injected on the center core and separated into four cores. The innovative design switches different air-hole positions using pure silica layers throughout the length of the fiber to regulate the direction of light transmission between layers.
Wavelength demultiplexers are essential parts of optical systemic communications. They serve as a data distributor and can use a single input to produce multiple outputs. The background material is frequently natural silica, and air holes can be found anywhere throughout the length of the fiber as the low-index components.
The simulation results showed that after a 6 mm light propagation, the four-channel demux can start to demultiplex.
Go to article

Authors and Affiliations

Assia Ahlem Harrat
1
Mohammed Debbal
1
Mohammed Chamse Eddine Ouadah
2

  1. Department of Electronics and Telecommunications, Faculty of Science and Technology, University of Belhadj Bouchaib, Algeria
  2. Department of Telecommunications, Faculty of Electrical and Computer Engineering, University of Mouloud Mammeri, Algeria
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the concept of the modelling methodology of a payload-vessel system allowing for a comprehensive investigation of mutual interactions of the system dynamics for lifting in the air. The proposed model consists of six degrees of freedom (6-DoF) vessel and three degrees of freedom (3-DoF) lifting model that can replace the industrial practice based on a simplified approach adopted for light lifts. Utilising the response amplitude operators (RAOs) processing methodology provides the ability to incorporate the excitation functions at the vessel crane tip as a kinematic and analyse a wide spectrum of lifted object weights on a basis of regular wave excitation. The analytical model is presented in detail and its solution in a form of numerical simulation results are provided and discussed within the article. The proposed model exposes the disadvantages of the models encountered in engineering practice and literature and proposes a novel approach enabling efficient studies addressing a lack of access to reliable modelling tools in terms of coupled models for offshore lifting operations planning..
Go to article

Bibliography

  1.  W.G. Acero, L. Li, Z. Gao, and T. Moan, “Methodology for assessment of the operational limits and operability of marine operations,” Ocean Eng., vol. 125, pp. 308–327, 2016, doi: 10.1016/j.oceaneng.2016.08.015.
  2.  W. Meng, L.H. Sheng, M. Qing, and B.G. Rong, “Intelligent control algorithm for ship dynamic positioning,” Arch. Control Sci., vol. 24, 2014, doi: 10.2478/acsc-2014-0026.
  3.  L. Li, Z. Gao, T. Moan, and H. Ormberg, “Analysis of lifting operation of a monopile for an offshore wind turbine considering vessel shielding effects,” Marine Struct., vol. 39, pp. 287–314, 2014, doi: 10.1016/j.marstruc.2014.07.009.
  4.  H. Zhu, L. Li, and M. Ong, “Study of lifting operation of a tripod foundation for offshore wind turbine,” in IOP Conf. Ser.: Mater. Sci. Eng., vol. 276, no. 1, 2017, doi: 10.1088/1757-899X/276/1/012012.
  5.  H.-S. Kang, C.H.-H. Tang, L.K. Quen, A. Steven, and X. Yu, “Prediction on parametric resonance of offshore crane cable for lowering subsea structures,” in 2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS). IEEE, 2016, pp. 165–170, doi: 10.1109/USYS.2016.7893905.
  6.  H.-S. Kang, C.H.-H. Tang, L.K. Quen, A. Steven, and X. Yu, “Parametric resonance avoidance of offshore crane cable in subsea lowering operation through a* heuristic planner,” Indian J. Geo-Marine Sci., 2017.
  7.  V. Čorić, I. Ćatipović, and V. Slapničar, “Floating crane response in sea waves,” Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, vol. 65, no. 2, pp. 111–120, 2014.
  8.  N. Sun, Y. Wu, H. Chen, and Y. Fang, “An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments,” Mech. Syst. Signal Process., vol. 102, pp. 87–101, 2018, doi: 10.1016/j.ymssp.2017.09.027.
  9.  X. Peng, Z. Geng et al., “Anti-swing control for 2-d underactuated cranes with load hoisting/lowering: A coupling-based approach,” ISA Trans., vol. 95, pp. 372–378, 2019, doi: 10.1016/j.isatra.2019.04.033.
  10.  Y.-G. Sun, H.-Y. Qiang, J. Xu, and D.-S. Dong, “The nonlinear dyn., and anti-sway tracking control for offshore container crane on a mobile harbor,” J. Marine Sci. Technol., vol. 25, no. 6, p. 5, 2017, doi: 10.6119/JMST-017-1226-05.
  11.  Q.H. Ngo, N.P. Nguyen, C.N. Nguyen, T.H. Tran, and Q.P. Ha, “Fuzzy sliding mode control of an offshore container crane,” Ocean Eng., vol. 140, pp. 125–134, 2017, doi: 10.1016/j.oceaneng.2017.05.019.
  12.  X. Xu and M. Wiercigroch, “Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum,” Nonlinear Dyn., vol. 47, no. 1-3, pp. 311–320, 2007, doi: 10.1007/s11071-006-9074-4.
  13.  D. Yurchenko and P. Alevras, “Stability, control and reliability of a ship crane payload motion,” Probab. Eng. Mech., vol. 38, pp. 173–179, 2014, doi: 10.1016/j.probengmech.2014.10.003.
  14.  X. Zhao and J. Huang, “Distributed-mass payload dynamics and control of dual cranes undergoing planar motions,” Mech. Syst. Signal Process., vol. 126, pp. 636–648, 2019, doi: 10.1016/j.ymssp.2019.02.032.
  15.  Z. Ren, A.S. Verma, B. Ataei, K.H. Halse, and H.P. Hildre, “Model-free anti-swing control of complex-shaped payload with offshore floating cranes and a large number of lift wires,” Ocean Eng., vol. 228, 2021, doi: 10.1016/j.oceaneng.2021.108868.
  16.  N.-K. Ku, J.-H. Cha, M.-I. Roh, and K.-Y. Lee, “A tagline proportional–derivative control method for the anti-swing motion of a heavy load suspended by a floating crane in waves,” Proc. Inst. Mech. Eng., Part M: J. Eng. Marit. Environ., vol. 227, no. 4, pp. 357–366, 2013, doi: 10.1177/1475090212445546.
  17.  S. Robak and R. Raczkowski, “Substations for offshore wind farms: A review from the perspective of the needs of the polish wind energy sector,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 4, 2018, doi: 10.24425/124268.
  18.  “Recommended practice modelling and analysis of marine operations n103,” DET NORSKE VERITAS GL, pp. Sec. 9.2–9.3, 2017.
  19.  “Recommended practice c205 environmental conditions and environmental loads,” DET NORSKE VERITAS GL, p. Sec. 3.3.2, 2010.
  20. Fathom Group Ltd. Engineering Procedure, 2018.
  21.  P. Boccotti, Wave mechanics and wave loads on marine structures. Butterworth-Heinemann, 2014.
  22.  B. Chilinski, A. Mackojc, R. Zalewski, and K. Mackojc, “Proposal of the 3-dof model as an approach to modelling offshore lifting dynamics,” Ocean Eng., vol. 203, pp. 287–314, 2020, doi: 10.1016/j.oceaneng.2020.107235.
Go to article

Authors and Affiliations

Anna Mackojć
1
ORCID: ORCID
Bogumil Chiliński
1
ORCID: ORCID

  1. Institute of Machine Design Fundamentals, Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Amount of works and activities tending towards defining new transport mode on the basis of the hyperloop system concept is growing significantly. They assume use of individual vehicles, offering space for several dozen passengers, running with speeds near speed of sound in a closed space with significantly lowered air pressure, utilizing magnetic levitation. Simultaneously it is fairly from economic point of view assumed, that first implementations should link locations between which traffic demand is expected to be very high. Assumed short spacing between hyper-vehicles, which are frequently declared to be ad-hoc adjusted to transport demand, to the knowledge of the authors gained in railway transport, seems to be in conflict with high speed safety related spacing in view of the line infrastructure capacity operational rules defined in the UIC (International Union of Railways) documents. That is the challenge, that formed the basis for authors’ investigations described in the paper. Several thesis regarding future new mode of transport based on hyperloop concept form an outcome of those investigations presented in conclusions.
Go to article

Authors and Affiliations

Marek Pawlik
1
ORCID: ORCID
Magdalena Kycko
2
ORCID: ORCID
Konrad Zakrzewski
2
ORCID: ORCID

  1. Assistant professor, PhD., Eng., Warsaw University of Technology, Faculty of Civil Engineering, al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. M.Sc., Eng., Railway Research Institute, Chłopickiego 50, 04-275 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Spark plasma sintering (SPS) is a promising modern technology that sinters a powder, whether it is ceramic or metallic, transforming it into a solid. This technique applies both mechanical pressure and a pulsed direct electric current simultaneously. This study presents a three-dimensional (3D) numerical investigation of the thermoelectric (thermal and electric current density fields) and mechanical (strain-stress and displacement fields) couplings during the SPS process of two powders: alumina (ceramic) and copper (metallic). The ANSYS software was employed to solve the conservation equations for energy, electric potential, and mechanical equilibrium simultaneously. Initially, the numerical findings regarding the thermoelectric and mechanical coupling phenomena observed in the alumina and copper specimens were compared with existing numerical and experimental results from the literature. Subsequently, a comprehensive analysis was conducted to examine the influence of current intensity and applied pressure on the aforementioned coupling behavior within the SPS device. The aim was to verify and clarify specific experimental values associated with these parameters, as reported in the literature, and identify the optimal values of applied pressure (5 MPa for alumina and 8.72 MPa for copper) and electric current (1000 A for alumina and 500 A for copper) to achieve a more homogeneous material.
Go to article

Bibliography

[1] C. Wang, L. Cheng, and Z. Zhao. FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation. Computational Materials Science, 49(2):351–362, 2010. doi: 10.1016/j.commatsci.2010.05.021.
[2] M. Fattahi, M.N. Ershadi, M. Vajdi, F.S. Moghanlou, and A.S. Namini. On the simulation of spark plasma sintered TiB2 ultra high temperature ceramics: A numerical approach. Ceramics International, 46(10A):14787–14795, 2020. doi: 10.1016/j.ceramint.2020.03.003.
[3] A. Pavia, L. Durand, F. Ajustron, V. Bley, G. Chevallier, A. Peigney, and C. Estournès. Electro-thermal measurements and finite element method simulations of a spark plasma sintering device. Journal of Materials Processing Technology, 213(8):1327–1336, 2013. doi: 10.1016/j.jmatprotec.2013.02.003.
[4] E.A. Olevsky, C. Garcia-Cardona, W.L. Bradbury, C.D. Haines, D.G. Martin, and D. Kapoor. Fundamental aspects of spark plasma sintering: II. Finite element analysis of scalability. Journal of the American Ceramics Society, 95(8):2414–2422, 2012. doi: 10.1111/j.1551-2916.2012.05096.x.
[5] D. Tiwari, B. Basu, and K. Biswas. Simulation of thermal and electric field evolution during spark plasma sintering. Ceramics International, 35:699–708, 2009. doi: 10.1016/j.ceramint.2008.02.013.
[6] X. Wang, S.R. Casolco, G. Xu, and J.E. Garay. Finite element modeling of electric current-activated sintering: The effect of coupled electrical potential, temperature and stress. Acta Materialia, 55(10):3611–3622, 2007. doi: 10.1016/j.actamat.2007.02.022.
[7] G. Maizza, S. Grasso, Y. Sakka, T. Noda, and O. Ohashi. Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder. Science and Technology of Advanced Materials, 8(7-8):644–654, 2007. doi: 10.1016/j.stam.2007.09.002.
[8] G. Garcia and E. Olevsky. Numerical simulation of spark plasma sintering. Advances in Science and Technology, 63:58–61, 2010.doi: 10.4028/www.scientific.net/AST.63.58.
[9] K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. Vanderbiest. Modelling of the temperature distribution during field assisted sintering. Acta Materialia, 53:4379–4388, 2005. doi: 10.1016/j.actamat.2005.05.042.
[10] A. Cincotti, A.M. Locci, R. Orrù, and G. Cao. Modeling of SPS apparatus: Temperature, current and strain distribution with no powders. AIChE Journal, 53(3):703–719, 2007. doi: 10.1002/aic.11102.
[11] A. Zavaliangos, J. Zhang, M. Krammer, and J. Groza. Temperature evolution during field activated sintering. Materials Science and Engineering: A, 379(1-2):218–228, 2004. doi: 10.1016/j.msea.2004.01.052.
[12] S. Muñoz and U. Anselmi-Tamburini. Temperature and stress fields evolution during spark plasma sintering processes. Journal of Materials Science, 45:6528–6539, 2010. doi: 10.1007/s10853-010-4742-7.
[13] C. Wolff, S. Mercier, H. Couque, and A.Molinari. Modeling of conventional hot compaction and Spark Plasma Sintering based on modified micromechanical models of porous materials. Mechanics of Materials, 49:72–91, 2012. doi: 10.1016/j.mechmat.2011.12.002.
[14] C. Manière, G. Lee, J. McKittrick, and E. Olevsky. Energy efficient spark plasma sintering: breaking the threshold of large dimension tooling energy consumption. Journal of the American Ceramics Society, 102(2):706–716, 2019. doi: 0.1111/jace.16046.
[15] W. Chen, U. Anselmi-Tamburini, J.E. Garay, J.R. Groza, and Z.A. Munir. Fundamental investigations on the spark plasma sintering/synthesis process I. Effect of dc pulsing on reactivity. Materials Science and Engineering: A, 394(1-2):132–138, 2005. doi: 10.1016/j.msea.2004.11.020.
[16] I. Sulima, G. Boczkal, and P. Palka. Mechanical properties of composites with titanium diboride fabricated by spark plasma sintering. Archives of Metallurgy and Materials, 62(3):1665–1671, 2017. doi: 10.1515/amm-2017-0255.
[17] D. Bubesh Kumar, B. Selva babu, K.M. Aravind Jerrin, N. Joseph, and A. Jiss. Review of spark plasma sintering process. IOP Conference Series: Materials Science and Engineering, 993:012004, 2020. doi: 10.1088/1757-899X/993/1/012004.
[18] P.Yu. Nikitin, I.A. Zhukov, and A.B. Vorozhtsov. Decomposition mechanism of AlMgB14 during the spark plasma sintering. Journal of Materials Research and Technology, 11:687–692, 2021. doi: 10.1016/j.jmrt.2021.01.044.
[19] M. Stuer, P. Bowen, and Z. Zhao. Spark plasma sintering of ceramics: from modeling to practice. Ceramics, 3(4):476–493, 2020. doi: 10.3390/ceramics3040039.
[20] U. Anselmi-Tamburini, S. Gennari, J.E. Garay, and Z.A. Munir. Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions. Materials Science and Engineering: A, 394(1-2):139–148,2005. doi: 10.1016/j.msea.2004.11.019.
[21] G. Lee, E. Olevsky, C. Manière, A. Maximenko, O. Izhvanov, C. Back, and J. McKittrick. Effect of electric current on densification behavior of conductive ceramic powders consolidated by spark plasma sintering. Acta Materialia, 144:524–533, 2017. doi: 10.1016/j.actamat.2017.11.010.
[22] A. Annamalai, M. Srikanth, A. Muthuchamy, S. Acharya, A. Khisti, D. Agrawal, and C. Jen. Spark plasma sintering and characterization of Al-TiB2 composites. Metals, 10(09):1110, 2020. doi: 10.3390/met10091110.
[23] G. Molenat, L. Durand, J. Galy, and A. Couret. Temperature control in spark plasma sintering: An FEM approach. Journal of Metallurgy, 2010:145431, 2020. doi: 10.1155/2010/145431.
[24] J. Gurt Santanach, A. Weibel, C. Estournès, Q. Yang, C. Laurent, and A.Peigney. Spark plasma sintering of alumina: Study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth. Acta Materialia, 59:1400–1408, 2011. doi: 10.1016/j.actamat.2010.11.002.
[25] S. Deng, R. Li, T. Yuan, and P. Cao. Effect of electric current on crystal orientation and its contribution to densification during spark plasma sintering. Materials Letters, 229:126–129, 2018. doi: 10.1016/j.matlet.2018.07.001.
[26] Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. Journal of Materials Science, 41:763–777, 2006. doi: 10.1007/s10853-006-6555-2.
[27] S. Grasso, P. Poetschke, V. Richter, G. Maizza, Y. Sakka, and M. Reece. Low-temperature spark plasma sintering of pure nano WC powder. Journal of the American Ceramic Society, 96(6):1702–1705, 2013. doi: 10.1111/jace.12365.
[28] M.M. Shahraki, M.D. Chermahini, M. Abdollahi, R. Irankhah, P. Mahmoudi, and E. Karimi. Spark plasma sintering of SnO2 based varistors. Ceramics International, 46(12):20429–20436, 2020. doi: 10.1016/j.ceramint.2020.05.135.
[29] F. Mechighel, G. Antou, B. Pateyron, A. Maître, and M. El Ganaoui. Simulation numérique du couplage électrique, thermique et mécanique lors du frittage ``flash'' de matériaux céramiques et métalliques. Congrès Français de Thermique/Actes, 2008. https://www.sft.asso.fr/document.php?pagendx=10430.
[30] F. Mechighel, A. Maître, B. Pateyron, M. El Ganaoui, and M. Kadja. Evolution de la température lors du processus du frittage ``flash''. Congrès Français de Thermique/Actes, 2009. https://www.sft.asso.fr/document.php?pagendx=9830.
[31] S.O. Jeje, M.B. Shongwe, A.L. Rominiyi, and P.A. Olubambi. Spark plasma sintering of titanium matrix composite – a review. The International Journal of Advanced Manufacturing Technology, 117:2529–2544, 2021. doi: 10.1007/s00170-021-07840-7.
[32] E. Bódis and Z. Károly. Fabrication of graded alumina by spark plasma sintering. The International Journal of Advanced Manufacturing Technology, 117:2835–2843, 2021. doi: 10.1007/s00170-021-07855-0.
[33] ANSYS software (16.2) [ANSYS Workbench]. (2015). https://www.ansys.com.
[34] R.J. Chowdhury. Numerical Study of the Process Parameters in Spark Plasma Sintering (SPS). Master of Science Thesis, Faculty of the Graduate College of the Oklahoma State University, 2013.
[35] CES EduPack software, Granta Design Limited, Cambridge, UK (2019). Ansys (CES) Granta EduPack. https://www.ansys.com/products/materials/granta-edupack.
[36] F. Mechighel, M. El Ganaoui, M. Kadja, B. Pateyron, and S. Dost. Numerical simulation of three dimensional low Prandtl liquid flow in a parallelepiped cavity under an external magnetic field. Fluid Dynamics \amp; Materials Processing, 5(4):313–330, 2009. doi: 10.3970/fdmp.2009.005.313.
[37] C. Manière, A. Pavia, L. Durand, G. Chevalier, K. Afanga, and C. Estournès. Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process. Journal of the European Ceramic Society, 36(3):741–748, 2016. doi: 10.1016/j.jeurceramsoc.2015.10.033.
[38] G. Antou, G. Mathieu, G. Trolliard, and A. Maître. Spark plasma sintering of zirconium carbide and oxycarbide: Finite element modeling of current density, temperature, and stress distributions. Journal of Materials Research, 24:404–414, 2009. doi: 10.1557/JMR.2009.0039.
[39] K.N. Zhu, A. Godfrey, N. Hansen, and X.D. Zhang. Microstructure and mechanical strength of near- and sub-micrometre grain size copper prepared by spark plasma sintering. Materials \amp; Design, 117:95–103, 2017. doi: 10.1016/j.matdes.2016.12.042.
[40] C. Arnaud, C. Manière, G. Chevallier, C. Estournès, R. Mainguy, F. Lecouturier, D. Mesguich, A. Weibel, L. Durand, and C. Laurent. Dog-bone copper specimens prepared by one-step spark plasma sintering. Journal of Materials Science, 50:7364–7373, 2015. doi: 10.1007/s10853-015-9293-5.
[41] J. Diatta, G. Antou, N. Pradeilles, and A. Maître. Numerical modeling of spark plasma sintering – Discussion on densification mechanism identification and generated porosity gradients. Journal of the European Ceramic Society, 37(15):4849–4860, 2017. doi: 10.1016/j.jeurceramsoc.2017.06.052.
Go to article

Authors and Affiliations

Abdelmalek Kriba
1
ORCID: ORCID
Farid Mechighel
1 2
ORCID: ORCID

  1. LR3MI Laboratory, Mechanical Engineering Department, Faculty of Technology, Badji Mokhtar - Annaba University, Annaba , Algeria
  2. Energy and Pollution Laboratory - Mentouri Brothers University - Constantine, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The main goal of the research presented in this paper is to find an analytical solution for an electromagnetic energy harvester with double magnet. A double magnet configuration is defined as a structure in which two magnets, either attracting or repelling, are positioned at a constant distance from each other. Analytical dependencies that govern the shape of electromechanical coupling coefficient curves for various double magnet configurations are provided. In the subsequent step of the analysis, resonance curves for its vibrations and the corresponding recovered energy were determined for the selected dual magnet settings using the harmonic balance method. These characteristics enabled us to ascertain the optimal resistance and estimate the maximum electrical power that can be harvested from the vibrations of the double magnets.
Go to article

Authors and Affiliations

Andrzej Mirura
1
ORCID: ORCID
Krzysztof Kecik
1
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Mechanical Engineering, Department of Applied Mechanics, Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

A new approach to passive electromagnetic modelling of coupled–cavity quantum cascade lasers is presented in this paper. One of challenges in the rigorous analysis of such eigenvalue problem is its large size as compared to wavelength and a high quality factor, which prompts for substantial computational efforts. For those reasons, it is proposed in this paper to consider such a coupled-cavity Fabry-Perot resonant structure with partially transparent mirrors as a two-port network, which can be considered as a deterministic problem. Thanks to such a novel approach, passive analysis of an electrically long laser can be split into a cascade of relatively short sections having low quality factor, thus, substantially speeding up rigorous electromagnetic analysis of the whole quantum cascade laser. The proposed method allows to determine unequivocally resonant frequencies of the structure and the corresponding spectrum of a threshold gain. Eventually, the proposed method is used to elaborate basic synthesis rules of coupled–cavity quantum cascade lasers.

Go to article

Authors and Affiliations

M. Krysicki
B. Salski
P. Kopyt
Download PDF Download RIS Download Bibtex

Abstract

Entries in steeply pitching seams have a more complex stress environment than those in flat seams. This study targets techniques for maintaining the surrounding rock mass stability of entries in steep seams through a case study of a steep-seam entry at a mine in southern China. An in-depth study of the deformation and instability mechanisms of the entry is conducted, employing field measurement, physical simulation experiment, numerical simulation, and theoretical analysis. The study results show that the surrounding rock mass of the entry is characterised by asymmetrical stress distribution, deformation, and failure. Specifically, 1) the entry deformation is characterised by a pattern of floor heaving and roof subsidence; 2) broken rock zones in the two entry walls are larger than those in the roof and floor, and the broken rock zone in the seam-floor side wall is larger than that in the seam-roof side wall; 3) rock bolts in the middle-bottom part of the seam-floor side wall of the entry are prone to failure due to tensile stress; and 4) rock bolts in the seam-roof side wall experience relatively even load and relatively small tensile stress. Through analysis, disturbances were found to occur in both temporal and spatial dimensions. Specifically, in the initial mining stage, the asymmetrical rock structure and stress distribution cause entry deformation and instability; during multiple-seam multiple-panel mining operations, a wedge-shaped rock mass and a quasi-arc cut rock stratum formed in the mining space may cause subsidence in the seam-floor side wall of the entry and inter-stratum transpression, deformation, and instability of the entry roof and floor. The principles for controlling the stability of the surrounding rock mass of the entry are proposed. In addition, an improved asymmetrical coupled support structure design for the entry is proposed to demonstrate the effective control of entry deformation.

Go to article

Authors and Affiliations

Panshi Xie
Yongping Wu
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The nonlinear interaction of wave and non-wave modes in a gas planar flow are considered. Attention is mainly paid to the case when one sound mode is dominant and excites the counter-propagating sound mode and the entropy mode. The modes are determined by links between perturbations of pressure, density, and fluid velocity. This definition follows from the linear conservation equations in the differential form and thermodynamic equations of state. The leading order system of coupling equations for interacting modes is derived. It consists of diffusion inhomogeneous equations. The main aim of this study is to identify the principle features of the interaction and to establish individual contributions of attenuation (mechanical and thermal attenuation) in the solution to the system.

Go to article

Authors and Affiliations

Anna Perelomova
Download PDF Download RIS Download Bibtex

Abstract

The power injection method (PIM) is an experimental method used to identify the statistical energy analysis (SEA) parameters (called loss factors – LFs) of a vibroacoustic system. By definition, LFs are positive real numbers. However, it is not uncommon to obtain negative LFs during experiments, which is considered a measurement error. To date, a recently proposed method, called Monte Carlo filtering (MCF), of correcting negative coupling loss factors (CLFs) has been validated for systems that meet SEA assumptions. In this article, MCF was validated for point connections and in conditions where SEA assumptions are not met (systems with low modal overlap, non-conservative junctions, strong coupling). The effect of removing MCF bias on the results was also examined. During the experiments, it was observed that the bias is inversely proportional to the damping loss factor of the examined subsystems. The obtained results confirm that the PIM, combined with MCF, allows to determine non-negative SEA parameters in all considered cases.
Go to article

Authors and Affiliations

Paweł Nieradka
1 2
Andrzej Dobrucki
1

  1. Wrocław University of Science and Technology, Department of Acoustics, Multimedia and Signal Processing, Wroclaw, Poland
  2. KFB Acoustics, Acoustic Research and Innovation Center, Domasław, Poland
Download PDF Download RIS Download Bibtex

Abstract

When the traditional multi-motor speed synchronous control strategy is applied to the vacuum pump system, it is prone to the drawbacks of large synchronization error. In this paper, a simplified mathematical model of the motor for a vacuum pump is established and the transfer function is introduced, which weakens the multivariable, strong coupling and nonlinear characteristics of the motor system. According to the basic principle of the relative coupling control strategy, the neural network Proportion Integration Differentiation (PID) is introduced as a speed compensator in this system. It effectively improves the synchronization and anti-interference ability of the multi motor.

Go to article

Authors and Affiliations

Yonglong Zhang
Yuejun An
Guangyu Wang
Xiangling Kong

This page uses 'cookies'. Learn more