The development of industry is determined by the use of modern materials in the production of parts and equipment. In recent years, there has been a significant increase in the use of nickel-based superalloys in the aerospace, energy and space industries. Due to their properties, these alloys belong to the group of materials hard-to-machine with conventional methods. One of the non-conventional manufacturing technologies that allow the machining of geometrically complex parts from nickel-based superalloys is electrical discharge machining. The article presents the results of experimental investigations of the impact of EDM parameters on the surfaces roughness and the material removal rate. Based on the results of empirical research, mathematical models of the EDM process were developed, which allow for the selection of the most favourable processing parameters for the expected values of the surface roughness Sa and the material removal rate.
To study the impact of suspended equipment on the ride comfort in a railway vehicle, a rigid flexible general model of such a vehicle is required. The numerical simulations is based on two different models, derived from the general model of the vehicle, namely a reference model of a vehicle with no equipment, and another model with six suspended elements of equipment mounted in various positions along the carbody. The objective of this paper arises from the observation that the literature does not contain any study that highlights the change in the ride comfort resulting exclusively due to the influence of equipment. The influence of the suspended equipment on the ride comfort is determined by comparing the ride comfort indices calculated in the carbody reference points, at the centre and above the two bogies, for a model with six elements of equipment and a model of the vehicle with no equipment.
The central theme of this work was to analyze high aspect ratio structure having structural nonlinearity in low subsonic flow and to model nonlinear stiffness by finite element-modal approach. Total stiffness of high aspect ratio wing can be decomposed to linear and nonlinear stiffnesses. Linear stiffness is modeled by its eigenvalues and eigenvectors, while nonlinear stiffness is calculated by the method of combined Finite Element-Modal approach. The nonlinear modal stiffness is calculated by defining nonlinear static load cases first. The nonlinear stiffness in the present work is modeled in two ways, i.e., based on bending modes only and based on bending and torsion modes both. Doublet lattice method (DLM) is used for dynamic analysis which accounts for the dependency of aerodynamic forces and moments on the frequency content of dynamic motion. Minimum state rational fraction approximation (RFA) of the aerodynamic influence coefficient (AIC) matrix is used to formulate full aeroelastic state-space time domain equation. Time domain dynamics analyses show that structure behavior becomes exponentially growing at speed above the flutter speed when linear stiffness is considered, however, Limit Cycle Oscillations (LCO) is observed when linear stiffness along with nonlinear stiffness, modeled by FE-Modal approach is considered. The amplitude of LCO increases with the increase in the speed. This method is based on cantilevered configuration. Nonlinear static tests are generated while wing root chord is fixed in all degrees of freedom and it needs modification if one requires considering full aircraft. It uses dedicated commercial finite element package in conjunction with commercial aeroelastic package making the method very attractive for quick nonlinear aeroelastic analysis. It is the extension of M.Y. Harmin and J.E. Cooper method in which they used the same equations of motion and modeled geometrical nonlinearity in bending modes only. In the current work, geometrical nonlinearities in bending and in torsion modes have been considered.
The functionality of a prosthesis is determined by clinical procedures, the manufacturing technology applied, the material used and its strength parameters. The aim of the paper is to evaluate the static strength and fatigue strength of acrylic construction materials directly after the process of polymerisation and for aged materials. It has been confirmed that the deformation speed of the tested materials has an evident impact on their mechanical characteristics. With greater deformation speed, a consistent increase in the material elasticity was observed in static compression tests, which was accompanied by a reduction in engineering stresses at the final stage of deformation. The greatest fatigue strength was observed for Vertex. It was by about 33% greater than the strength of Villacryl – the material that has the lowest fatigue properties. The resistance of acrylic polymers to cyclic loading applied with the frequency of 1 Hz may become an indication for the selection of the material to be used in the clinical procedures in which a patient is provided with full dentures.
The performance of majority engineering systems made of composite laminates can be improved by increasing strength to weight ratio. Variable thickness approach (VTA), in discrete form, used in this study is capable of finding minimum laminate thickness in one stage only, instead of two stage methodology defined by other researchers, with substantial accuracy for the given load conditions. This minimum required laminate thickness can be used by designers in multiple ways. Current study reveals that effectiveness of VTA in this regard depends on ply thickness increment value and number of plies. Maximum Stress theory, Tsai Wu theory and Tsai Hill theory are used as constraints, while ply angles, ply thicknesses and number of plies in discrete form are used as design variables in current simulation studies. Optimization is carried out using direct value coded genetic algorithm. The effect of design variables such as ply angles, ply thicknesses and number of plies in discrete form on optimum solution is investigated considering Uniform Thickness Approach (UTA) and Variable Thickness Approach (VTA) for various load cases.
The present work aims at studying the effects of orientation, size, position, and the combination of multiple internal diathermal obstructions in a fluid-saturated square porous enclosure, generally encountered in thermal insulations. The overall objective is to suppress the natural convection fluid flow and heat transfer across a differentially heated porous enclosure. To serve this purpose, multiple diathermal obstructions are employed to mechanically protrude into a porous medium. It is sought to estimate the effect of various types of orientation, clustering and alternate positioning of obstructions by considering number of obstructions (Np), length of obstructions (λ), modified Rayleigh number (Ra*) on local and average Nusselt number (Nu). The Darcy model for porous media is solved using Finite difference method along with Successive Accelerated Replacement scheme. One of the findings is that the value of the Nusselt number decreases by increasing both, the number of obstructions as well as the length of obstructions irrespective of its orientation and positioning. The reduction in Nusselt number is significant with obstructions attached on lower half of the hot wall and/or on upper half of cold wall. In addition, the overall reduction in Nusselt number is slightly greater with obstructions attached explicitly to the cold wall.
The paper presents a new method of lifetime calculations of steam turbine components operating at high temperatures. Component life is assessed on the basis of creep-fatigue damage calculated using long-term operating data covering the whole operating period instead of representative events only. The data are analysed automatically by a dedicated computer program developed to handle big amount of process data. Lifetime calculations are based on temperature and stress analyses performed by means of finite element method and using automatically generated input files with thermal and mechanical boundary conditions. The advanced lifetime assessment method is illustrated by an example of lifetime calculations of a steam turbine rotor.
About the Journal
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.
Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.
Outline of procedures